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ABSTRACT The unknown noise variance and time-variant fading channels make the spectrum sensing
design a challenging task for cognitive radios. Most existing sensing methods suffer from the information
uncertainty and can hardly acquire promising performances in the adverse situations. To address this
challenge, in this paper, we first formulate a dynamic state-space model for spectrum sensing, in which
the unknown noise variance and time-variant flat fading channels are all taken into considerations. The
dynamic behaviors of both primary user states and fading channels are characterized by two discrete state
Markov chains. Based on this model, a novel spectrum sensing scheme is designed to recursively estimate the
occupancy state of primary users, by estimating the time-variant fading channel gain and noise parameters
jointly. The joint estimation is primarily premised on a maximum a posteriori probability criterion and the
marginal particle filtering schemes. Simulation results are provided to demonstrate the advantages of our
proposed method, which can significantly improve the sensing performance over time-variant flat fading
channels, even with unknown noise variance.

INDEX TERMS Spectrum sensing, unknown noise parameter, time-variant flat fading channel, joint
estimation.

I. INTRODUCTION
Due to limited availability of spectrum resources, the con-
ventional paradigm of static spectrum management will not
be able to accommodate the ever-growing demands of future
wireless communications [1]. As an innovative technique,
cognitive radio (CR) supports the secondary users (SUs) to
utilize the spectrum assigned to the primary users (PUs)
opportunistically [2]–[6], thus, it has the potential to alleviate
the spectrum scarcity problem. According to Federal Com-
munication Commission (FCC) [1], CR is ‘‘a radio or system
that senses its operational electromagnetic environment and
dynamically and autonomously adjusts its radio operating
parameters tomodify system operation, tomaximize through-
put, mitigate interference, facilitate inter-operability, access
secondary markets.’’ In this regards, spectrum sensing is one
of the fundamental and critical elements in CRs [7].

The main purpose of spectrum sensing is to identify the
occupancy status of PUs, i.e., whether the spectrum of interest
is occupied by the PUs [7]. The commonly used methods
include energy detection (ED) [8], [9], matched filtering
detection (MFD) [10], [11], cyclo-stationary feature detec-
tion [12] and waveform-based sensing [13]. Among these,
MFD yields the optimal detection performance under the
assumption that the received primary signals are perfectly
known and there is no information uncertainty. Thus, besides
the waveforms transmitted from the PU, the channel state
information (CSI) from the PU to SU should also be acquired.

Since there is usually no coordination between PU and SU,
the noise variance and the CSI between PU and SU can
be hardly estimated. In order to overcome the impact due
to noise uncertainty, there have been several approaches
proposed in the literature. Chen et al. proposed a method
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combining cooperative spectrum sensing with adaptivemulti-
threshold selection [14], [15]. The use of cooperative sens-
ing, to some extent, increases the deployment complexity
and may also introduce other optimization/feedback prob-
lems. A sensing method based on multi-antennas is proposed
in [16] using the generalized likelihood-ratio test (GLRT)
paradigm. Yet, the deployment of multi-antennas will pose
the strict requirement on sensing equipments. Zeng et al. [17]
proposed a sensing algorithm based on the difference of
statistical covariance between the received signals and that
of the white noises. This method, however, requires that the
received signals are temporally or spatially correlated. When
such correlation is low, the performance of this method will
be degraded.

As for the time-variant CSI, two classical techniques have
been proposed to combat the unfavorable effects. The first
one employs cooperative techniques as in [18]. The second
one, on the other hand, relies on the statistical properties of
the time-variant fading channels [9]. This method focuses on
the instantaneous random distribution of the fading channel,
but fails to exploit the underlying time-correlation of the
channel. A recent approach was suggested by Li et. al. [19],
in which the time-variant channel is estimated/tracked when
performing spectrum sensing. While this method manages
to jointly estimate PU’s occupancy states and time-variant
fading channel, the noise variance is assumed to be perfectly
known in [19].

To combat these imperfections, we focus on the spectrum
sensing design for CRs with unknown noise variance as well
as time-variant channel in this paper, and we propose an novel
sensing method, which will suppress the information uncer-
tainty and improve the sensing performance of MFD. With
the accurately acquired fading channels, the time-correlation
(or dynamic property) can be exploited to further promote
the sensing performance. By estimating both unknown chan-
nel fading and noise variance, the new sensing scheme will
mitigate the information uncertainty to the minimum, and
therefore, the sensing performance could even approach an
idealMFDwith the complete a priori information. In general,
the main contributions are summarized as follows.

First, we formulate a new dynamic state-space model
(DSM) to characterize the spectrum sensing process with
unknown noise and time-variant flat fading (TVFF) channel.
In the unified stochastic model, the PU’s state, the dynamic
TVFF channel as well as the unknown noise variance are
considered as three hidden states to be estimated. In par-
ticular, the dynamic transitions of both the PU state and
fading channel are considered, which are assumed to evolve
respectively as two finite states Markov chains (FSMC).

Second, a new sensing method for single-node is pro-
posed to cope with various link uncertainties, which jointly
detects/estimates three hidden states in real time, relying
on the Bayesian statistics inference. Traditional Bayesian
schemes, such as the expectation maximization (EM) algo-
rithm, may be also applied to solve this problem. Due to
the unavailability of likelihood functions (e.g., in the absence

of PU), however the EM scheme can hardly address the error
propagation in detection/estimation. Thus, such schemes tend
to be less appealing in the context of information uncer-
tainties. In order to deal with this challenging problem,
rather than a simple combination or direct application
of existing Bayesian methods, e.g., maximum a poste-
riori probability (MAP) or maximum likelihood (ML)
method, a novel three-stage joint sensing and estimation
algorithm is proposed. A promising marginalized particle
filtering (MPF) technology is integrated to track multi-
ple unknown states [20], which will be coupled with each
other. By tracking realtime fading channels and estimating
unknown noise variance, the spectrum sensing is recursively
implemented. It is noteworthy that the formulated DSM and
the designed sequential estimation scheme can also be gener-
alized to another kind of observations, e.g., the non-coherent
ED. Simulation results are provided to validate our new sens-
ing scheme. Except for the improved sensing performance,
the estimated channel gain as well as noise variance will
further facilitate the subsequent resource allocation.

The rest of this paper is organized as follows. In Section II,
we establish a unified DSM for spectrum sensing, which is
characterized by time-variant fading channels and unknown
noise variance. On this basis, a joint-estimation based sensing
paradigm is designed in Section III, and an iterative algorithm
is also proposed. Numerical simulations and performance
analyses are provided in Section IV. Finally, we conclude the
whole work in Section V.

II. SYSTEM MODEL
In this section, a unified dynamic state-space model is formu-
lated to characterize spectrum sensing, where three hidden
states, i.e., the PU emission signal xn, the PU-SU channel
state an and unknown noise variance 6, need to be tracked
based on the observation yn. In contrast to traditional schemes
focusing on the instantaneous random behaviors, the time-
variant dynamic of fading channel will be fully exploited. Our
dynamic state-space model is given by:

xn = 8(xn−1), (1)

an = 9 (an−1), (2)

yn = �(xn, an, zn). (3)

Two hidden states, i.e., the PU emission signal xn and the
channel state an, dynamically evolve according to indepen-
dently transitional functions 8(·) and 9(·), respectively. The
unknown variance of measurement noise, i.e., 6, is static
(or at least, in a long period). The noisy observation yn is
specified via the measurement function �(·). In other words,
�(·) gives the coupling relationship between the measure-
ment yn and three hidden states (i.e., xn, an and6 in Gaussian
noise zn).

A. DYNAMIC OF PU STATES
The emission state of PU comes into two alternative forms:
active and inactive. For clarity,H0 andH1 respectively denote
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two hypotheses, i.e., the inactive and active state of PU.
Once the PU switches to the active state H1, it will transmit
a sequence of preamble signals, i.e., xn = xc. Without
lack of generality, the binary sequence is assumed (note that
the generalization to complex formats is straightforward),
with a transmission power Ex = E{xcxTc } and a length M .
Otherwise, it stays in the inactive state and emits no signals,
i.e., we have xn = 01×M under H0. Such two states switch
to each other with specific transitional probabilities. Thus,
a two-state Markov chain is used to model the evolution of
PU states, with its transitional probability matrix (TPM):

Px =

[
pinactive→inactive pinactive→active
pactive→inactive pactive→active

]
,

=

[
p00 p01
p10 p11

]
. (4)

B. TVFF CHANNEL
For dynamic wireless environments, the Rayleigh fading is
further assumed to be time-variant [21]. To be specific, the
current fading state will be related with previous states. The
evolution of channel states will be abstracted as a Markov
chain, which is also characterized by another specific TPM.
That is, the fading channels assumed in the analysis is the
TVFF channels with short-term memory, which will be com-
monly encountered (e.g., in mobile communications). The
probability distribution function (PDF) of Rayleigh fading
distribution, with a scale parameter σ 2

R , is:

p (a) =


a

σ 2
R

× exp

(
−

a2

2σ 2
R

)
, 0 ≤ a ≤ ∞,

0, a < 0.

(5)

As far as the TVFF amplitude is considered, it will vary
randomly across a wide range. For two adjacent times, how-
ever the fading amplitude will be highly correlated. I.e., the
current fading state is related with a previous one. In order
to accommodate such dynamic correlations, various channel
models have been suggested, including the Clarke’s model,
autoregressive (AR) model and the FSMC model. Owing to
its effectiveness inmodelling fading time-correlations and the
convenience of analysis [21], a FSMC model is adopted in
this analysis.

In a FSMC model, the time-variant fading amplitude
is partitioned to K non-overlapping regions, i.e., an =
Ak ∈ [vk , vk+1), k = 0, 1, · · · ,K − 1. Each fading region
[vk , vk+1) is represented by one feasible state Ak with the sta-
tionary probability πk ,

∫ vk+1
vk

f (a)da. As discussed in [22],

a common strategy in constructing FSMC is the equal parti-
tion rule, i.e., let πk = 1/K . Thus, the region boundaries is
calculated by:

vk =

√
−2σ 2

R × ln
(
1−

k
K

)
, k = 0, 1, . . . ,K − 1, (6)

and accordingly, the representative fading state is:

Ak =

∫ vk+1
vk

af (a) da

πk
, k = 0, 1, . . . ,K − 1. (7)

The set of representative fading states is A =

{A0,A1, . . . ,AK−1}. Given the computational simplicity and
the ease of analysis, we use the first-order Markov chain
to model the evolution of channel states. Thus, the current
fading state is only related to its previous one, but statistically
independent of all other past and future states. I.e., for two
adjacent slots n−1 and n, the fading state will either stay in the
same state Ak , or transits to its immediate neighboring states
Ak−1 or Ak+1 [22]. For slow-varying fading conditions, the
first-order FSMC has been shown accurate in analysis [21].

Accordingly, the TPM of fading states becomes a tri-
diagonal matrix as in (8), as shown at the bottom of this page.
Each element of the TPM, i.e., pAk→Ak†

(k, k† ∈ {0, · · · ,
K − 1}), species the transition probability from Ak of time
n− 1 to Ak† of time n, i.e.,

pAk→Ak†
, Pr

(
an = Ak† |an−1 = Ak

)
,

=

∫ vk†+1
vk†

∫ vk+1
vk

f (an−1, an) dan−1dan

πk
, (9)

where f (an−1, an) denotes the bivariate Rayleigh joint prob-
ability density function [21]. Note that, the channel phase θn
can be also cast to a FSMC, which will follow a uniform
distribution, i.e., f (θ ) = 1

2π . For example, with the binary
signals, a channel phase θn may take 0 or π with the equal
probability [21]. For complex signals, a similar set of phase,
i.e., 2 = {20,21, . . . ,2K1−1}, may be constructed.

C. OBSERVATIONS
For the MFD-based sensing in the presence of unknown fad-
ing channels and noise variance, the observation conditioned
on two hypothesis is:

yn =

x
∗
c ⊗ zn, H0,

x∗c ⊗ (εnanxc + zn), H1.
(10)

Pa =


pA0→A0 pA0→A1 0 . . . 0 0 0
pA1→A0 pA1→A1 pA1→A2 . . . 0 0 0
...

...
. . .

...

0 0 0 . . . pAK−2→AK−3 pAK−2→AK−2 pAK−2→AK−1
0 0 0 . . . 0 pAK−1→AK−2 pAK−1→AK−1

. (8)
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FIGURE 1. The frame structure of the spectrum sensing scheme.

Here, ⊗ in (10) denotes a convolution operation. The
sampling size is M . zn , [zn,0, zn,1, . . . , zn,M−1]T , and zn,m
represents the additive white Gaussian noise (AWGN) with a
mean µ and a variance 6, i.e., zn,m ∼ N (µ,6). The noise
mean µ is assumed to be zero, whilst the noise variance 6
remains unknown but is static. εn , exp(jθ ) ∈ B accounts
for unknown channel phase. For the binary sequences, it will
be reduced to B , {+1,−1}.1 Due to the participation of
unknown fading gains, it is seen from (10) that the received
signal shows remarkable fluctuations.

As known, the above MFD detector requires both a priori
PU’s waveform (i.e., xc) and accurate CSI of PU-SU links
(i.e., an and 6), which will restrict its applications to some
extents. The proposed scheme, premised on a unified DSM
and a sequential estimation, is thereby designed to address
realistic information uncertainty, which can be generalized to
other observations, e.g., the non-coherent energy observation.

The frame structure is illustrated by Fig. 1, as in [25]. The
channel states an are assumed to be invariant within several
successive sense-transmit slots. That means, the coherence
time of fading channels, i.e., Tc ≈ 1/fD, covers multi-
ples sense-transmit slots with a duration of Ts = Ts1 +
Ts2 [23], [24]. Thus, we have Tc = JTs or fDTs ≈ Ts/Tc =
1/J < 1. Here, fD is the maximumDoppler frequency. To this
end, a sense-transmission slot could be classified into two
categories: first slot and non-first slot, and the channel state
will possibly transit into another state only in the first slot.

III. JOINT ESTIMATION ALGORITHM
With an overall consideration of spectral utilization and
mutual interference, the false alarm pf = p(x̂n = xc|H0) =
1 − p(x̂n = 0|H0) and the missing alarm pm = p(x̂n =
0|H1) = 1 − p(x̂n = xc|H1) are jointly considered. In this
way, the total right detection probability is used as a metric

1Note that, since the time-correlation of phases is insignificant
(i.e., following a uniform distribution), it will not be estimated in a recursive
manner, while its effects will be considered lately when evaluating likelihood
distributions. For complex format signals, alternatively the channel phase can
be directly taken into a DSM and the joint estimations. In both cases, the
subsequent estimation scheme will be similarly applicable.

of sensing performance, which is defined as [23]:

PTD , p{D,0} + p{D,1},

= p(x̂n = 0|H0)p(H0)+ p(x̂n = xc|H1)p(H1), (11)

where p{D,0} represents the detection probability under H0,
i.e., xn = 0, and p{D,1} represents the detection probability
under H1, i.e., xn = xc.
Given the time-variant fading and ambient noises with

unknown variance, most sensing schemes (e.g. ED andMFD)
may be less attractive, i.e., by only averaging out the unfavor-
able uncertainty via its statistical distribution. Thus, a joint
estimation paradigm is suggested, which will fully exploit the
coupling relations between hidden states and observations.
Thus, the main objective is to maximize the total right detec-
tion probability PTD, by acquiring three hidden states, i.e.,

(6̂, â0:n, x̂0:n|y0:n) = argmax [PTD],

= argmax
[
p{D,0} + p{D,1}

]
. (12)

From a Bayesian perspective, the joint estimation will be
implemented via the MAP criterion, i.e.,

(6̂, â0:n, x̂0:n)MAP
= arg max

an∈A
xn∈{0,xc}

[p(6, a0:n, x0:n|y0:n)].

(13)

With an objective of mixed detection and estimation
in (13), it will be ineffective (or even infeasible) to apply clas-
sical Bayesian methods (e.g., MAP or ML) directly to solve
this complicated problem. In (13), the mutual interruption of
three unknown parameters will be inevitable, which makes
most Bayesian methods infeasible. For example, if a PU is
inactive (H0), then there is no useful likelihood information
available to estimate fading channels. Conversely, if there
is no accurate link information (i.e., fading channels), then
the PU cannot be detected accurately. More importantly,
such two processes may affect each other, and the detection
(or estimation) error will lead to the wrong estimation
(or detection) in next slot.

In order to deal with the mixed detection and estima-
tion problem, a recursive Bayesian algorithm is designed,
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as in (14), as shown at the bottom of this page. Based on an
intuitive decomposition of (14), our proposed joint sensing
method will consist of three phases. Firstly, the channel state
is estimated based on MAP criterion; secondly, the PU state
is detected using the particle filtering (PF) technology [26];
and finally, the noise variance is updated via amarginalization
concept [27].

A. ESTIMATION OF TIME-VARIANT CHANNEL
From eq. (10), the likelihood information of fading chan-
nels will completely disappear under H0, i.e., xn = 0,
thus the Bayesian estimation will becomes impractical in
this situation. Therefore, an estimation strategy is related
with detection results. On the other hand, the fading channel
is assumed to be slow-varying, which can be utilized to
make the estimation result more accurate by using historical
observations. Based on the above considerations, we further
integrate coarse detection and accumulative modification.
A schematic diagram of channel state estimation is illustrated
in Fig. 2.

FIGURE 2. Diagram of the channel gain estimation.

1) COARSE DETECTION
The purpose of coarse detection is to obtain a rough esti-
mation of PU states, which will facilitate different strate-
gies in channel estimation. Although the accuracy of coarse

detection is relatively low, subsequent processing will modify
the erroneous results and accomplish the accurate detection.
According to (10), the observation yn underH0 is related only
with random noises zn, which determines the variance of yn.
The observation yn under H1 is related to the transmitting
power Ex, the temporal fading state an and the noise zn.
Note that, in each sensing slot, the transmitting power Ex is
fixed and known. For the adopted FSMC model, an belongs
to a discrete representative states set A, which is hence also
fixed but needs to be estimated. Thus, the first term in (10)
will become a deterministic but unknown term, which has
no contribution to the variance of yn. Therefore, yn follows
normal distributions with the same variance but different
expectations under H0 and H1, respectively, i.e.,

yn ∼

{
N (0, ‖xc‖26), H0,

N (εnanEx, ‖xc‖26), H1.
(15)

The initial estimation of PU states is derived via MAP
criterion:

x†n = arg max
xn∈{0, xc}

[
p
(
xn | yn, a†, 6̂n−1

)]
. (16)

Premised on conservative estimation, a† is the minimum of
channel gain set and can be computed by a† = min(A). The
posterior probability in (16) can be expressed as:

p
(
xn | yn, a†, 6̂n−1

)
=

p
(
yn | xn, a†, 6̂n−1

)
p (xn)∑

xn∈{0,xc} p
(
yn | xn, a†, 6̂n−1

)
p (xn)

, (17)

and the likelihood function can be computed as:

p
(
yn | xn, a†, 6̂n−1

)

=



1√
2π‖xc‖26̂n−1

exp

[
−

‖yn‖2

2‖xc‖26̂n−1

]
, xn=0,

max
εn∈B

1√
2π‖xc‖26̂n−1

exp

−
∥∥∥yn−εnExa†∥∥∥2
2‖xc‖26̂n−1

, xn=xc.

(18)

(
6̂n, ân, x̂n

)MAP

= arg max
an∈A

xn∈{0, xc}

[
p
(
6n, an, xn|6̂0:n−1, â0:n−1, x̂0:n−1, y0:n

)]
,

= arg max
a0:n∈A

x0:n∈{0, xc}


p
(
an|6̂0:n−1, â0:n−1, x̂0:n−1, y0:n

)
︸ ︷︷ ︸

MAP criterion

p
(
xn|6̂0:n−1, â0:n, x̂0:n−1, y0:n

)
︸ ︷︷ ︸

PF technology

p
(
6n|6̂0:n−1, â0:n, x̂0:n, y0:n

)
︸ ︷︷ ︸

marginalization concept︸ ︷︷ ︸
MPF


(14)
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2) SLOT CATEGORY DECISION
As mentioned, the static fading time covers several sense-
transmit periods. The transition of fading states occurs only
in some switching times, i.e., bnTs/Tcc, which is refereed
as the first sense-transmit slot. More specifically, the first
(or non-first) sense-transmit slots are determined by:

mod(nTs,Tc)

{
= 0, first slot,
6= 0, non−first slot,

n = 0, 1, . . . ,N − 1.

(19)

3) CHANNEL ESTIMATION FOR DIFFERENT SITUATIONS
For various coarse detection results (i.e., x†n) and different
slots (e.g., first switching or non-first), the channel esti-
mations will be implemented respectively according to the
following four cases, as in Fig. 2.
Situation 1: In the case, the fading state may transit to

another state or stay invariant. Yet, due to the coarse detection
result x†n = 0, there is little information of observation can be
utilized to estimate the channel gain, and the MAP estimation
will be infeasible. So, we have to obtain the estimation based
on the prior transition property, i.e.,

ân = argmax
an∈A

[
p(an|âpre)

]
, (20)

where âpre denotes the estimated channel of the previous time,
i.e., âpre = âbnTs/Tcc−1. Each prior transition probability has
been specified by the TPM in (8).
Situation 2: In the case, there is neither useful likelihood

information (e.g., H0) nor the transition of fading channels
(i.e., the non-first slot). Thus, the estimated channel state
remains as the same with the previous slot, i.e.,

ân = ân−1. (21)

Situation 3: In this case, the observation and the related
likelihood information will be exploited. Based on an MAP
criterion, the fading channel is estimated by (22), as
shown at the bottom of this page. Here, 6̂n−1 denotes the
estimation of noise variance in the previous slot. Recall
that the evolution of channel states is independent of PU
states, noise and observation, which is characterized by
a first-order FSMC. Thus, the current channel gain an is
only related to its previous state âpre. Furthermore, we
may simplify the prior probability of channel states, i.e.,
p
(
an|6̂n−1, â0:n−1, x̂0:n−1, x

†
n = xc, y0:n−1

)
= p

(
an|âpre

)
.

For the MF observation, the likelihood function p(yn|·)
follows a normal distribution, i.e.,

p
(
yn|6̂n−1, â0:n−1, an, x̂0:n−1, x†n = xc, y0:n−1

)
= max

εn∈B
p(yn|6̂n−1, x†n = xc, an, εn),

= max
εn∈B

1√
2π‖xc‖26̂n−1

exp

[
−
‖yn−εnExan‖2

2‖xc‖26̂n−1

]
(23)

Note that, in order to mitigate the effects from unknown
channel phases, a similar ML concept is used here.

In each first slot, the accumulative operation will be acti-
vated. That is, we will configure the accumulation observa-
tion and counter to Yn = yn and Mn = 1, respectively. Such
two variables (Mn and Yn) are introduced in order to run
accumulative mechanisms. Superficially, the accumulation
counter Mn is used to record the event of x†n = xc until the
current n-th slot within the static period (i.e., 0 6 Mn 6 J ),
while the accumulation observation Yn collect the historical
information corresponding to these events.
Situation 4: Within the static time, the historical informa-

tion will be utilized to further modify the estimation of chan-
nel states. First, the accumulation observation and counter are
updated via:

Yn = Yn−1 + yn, (24)

Mn = Mn−1 + 1. (25)

Then, the channel state will be estimated, conditioned on
the updated accumulation observation and counter, i.e.,

ân ∝ argmax
an∈A

[p(Yn|6̂n−1, x†n = xc, an)× p(an|âpre)],

= argmax
an∈A
{max
εn∈B

1√
2πMn‖xc‖26̂n−1

× exp

(
−
‖Yn − εnMnExan‖2

2Mn‖xc‖26̂n−1

)
×p(an|âpre)}. (26)

B. DETECTION OF PU STATES
In the absence of channel information, the coarse detec-
tion will be inaccurate. Based on the PF scheme, an itera-
tive scheme is developed to further modify the inaccurate

ân = argmax
an∈A

[
p
(
an|6̂n−1, â0:n−1, x̂0:n−1, x†n = xc, y0:n

)]
,

= argmax
an∈A

 p
(
yn|6̂n−1, â0:n−1, an, x̂0:n−1, x

†
n = xc, y0:n−1

)
p
(
an|6̂n−1, â0:n−1, x̂0:n−1, x

†
n = xc, y0:n−1

)
∑
an∈A

p
(
yn|6̂n−1, â0:n−1, an, x̂0:n−1, x

†
n = xc, y0:n−1

)
p
(
an|6̂n−1, â0:n−1, x̂0:n−1, x

†
n = xc, y0:n−1

)
,

∝ argmax
an∈A

[
p
(
yn|6̂n−1, â0:n−1, an, x̂0:n−1, x†n = xc, y0:n−1

)
p
(
an|6̂n−1, â0:n−1, x̂0:n−1, x†n = xc, y0:n−1

)]
. (22)
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p
(
yn|x

(i)
n−1 = 0, ân, 6̂n−1

)
= p

(
yn|xn = 0, ân, 6̂n−1

)
p
(
xn = 0|x(i)n−1 = 0

)
+ p

(
yn|xn = xc, ân, 6̂n−1

)
p
(
xn = xc|x

(i)
n−1 = 0

)
,

=
1√

2π‖xc‖26̂n−1

exp
(
−

y2n
2‖xc‖26̂n−1

)
p00 +max

εn∈B

1√
2π‖xc‖26̂n−1

exp

(
−

∥∥yn − εnExân∥∥2
2‖xc‖26̂n−1

)
p01, (30)

p
(
yn|x

(i)
n−1 = xc, ân, 6̂n−1

)
= p

(
yn|xn = 0, ân, 6̂n−1

)
p
(
xn = 0|x(i)n−1 = xc

)
+ p

(
yn|xn = xc, ân, 6̂n−1

)
p
(
xn = xc|x

(i)
n−1 = xc

)
,

=
1√

2π‖xc‖26̂n−1

exp
(
−

y2n
2‖xc‖26̂n−1

)
p10 +max

εn∈B

1√
2π‖xc‖26̂n−1

exp

(
−

∥∥yn − εnExân∥∥2
2‖xc‖26̂n−1

)
p11. (31)

detection results. Specifically, the posterior probability of
interest p(xn|y0:n, x0:n−1, a0:n), which is unfortunately non-
analytical, is approximated by a group of particles with asso-
ciated weights [28]. Then, theMAP estimation is numerically
obtained, i.e.,

x̂(MAP)
n = arg max

xn∈{0, xc}

{
I∑
i=1

δ
(
xn − x(i)n

)
× w(i)n

}
. (27)

The implementation of PF, for the considered scenarios,
will basically involve the following three
steps [24], [29], [30].

Firstly, the sequential importance sampling (SIS) [26] pro-
cess is applied, i.e., a group of random particles are sim-
ulated from an important distribution function, i.e., x(i)n ∼
π (xn|x

(i)
0:n−1, ân, 6̂n−1). Here, the important density is:

π (xn|x
(i)
0:n−1, ân, 6̂n−1),
1
= p

(
xn|x

(i)
0:n−1, ân, yn, 6̂n−1

)
,

∝ p
(
yn|xn, ân, 6̂n−1

)
× p

(
xn|x

(i)
n−1

)
, (28)

where p
(
xn|x

(i)
n−1

)
denotes the prior transition probability of

PU states.
Secondly, after sampling from the importance distribution,

the associated importance weights are updated via:

w(i)n = w(i)n−1 × p
(
yn|x

(i)
n−1, ân, 6̂n−1

)
, (29)

where likelihood functions are calculated by (30) and (31),
as shown at the top of this page.

Finally, the MAP estimation is derived, premised on the
simulated particles and the associated weights, as in (27).
If x̂n = xc, the PU transmitter is active at time n, and the
hypothesis H1 is true. Otherwise, x̂n = 0, then H0 is true.

C. ESTIMATION OF NOISE VARIANCE
After acquiring of fading channel gain and PU state, the noise
variance will be then updated via the following two steps.

Firstly, relying on a Bayesian framework and the con-
ception of conjectured prior, we assume one suitable prior

distribution for unknown noise variance and, therefore, the
posterior distribution can be derived then. Further, the hyper-
parameters of this posterior distribution will be updated based
on updated particles. Secondly, the estimation of noise vari-
ance will be obtained relying on a marginalization technique.

Without losing generality, the conjectured prior of
unknown noise variance is assumed to be an Inverse-Gamma
distribution [27], and its PDF is expressed as:

p (6) =
β
γ0
0

0 (γ0)

(
1
6

)γ0+1
× exp

(
−
β0

6

)
, 6 > 0, (32)

where β0 and γ0 denote two hyper-parameters of an Inverse-
Gamma distribution.

With the help of conjectured prior information, the poste-
rior distribution p(6|·) follows also an Inverse-Gamma dis-
tribution. A detailed derivation is given by (33), see the next
page.

With somemanipulation, the statistical density of unknown
noise variance is expressed as:

6|x(i)0:n, â0:n, y0:n

∼ IG

γ (i)n−1+ 1
2
, β

(i)
n−1+

min
εn∈B

∥∥∥yn − εnânx(i)n xTc
∥∥∥2

2‖xc‖2

. (34)

Based on (34), the hyper-parameters of the posterior distri-
bution will be updated via:

γ (i)n = γ
(i)
n−1 +

1
2
, (35)

β(i)n = β
(i)
n−1 +

min
εn∈B

∥∥∥yn − εnânx(i)n xTc
∥∥∥2

2‖xc‖2
. (36)

On this basis, the mean of noise variance is then written as:

E
(
6|x(i)0:n, â0:n, y0:n

)
=

β
(i)
n

γ
(i)
n − 1

, γ (i)n > 1. (37)
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p
(
6|x(i)0:n, â0:n, y0:n

)
∝ p

(
x(i)0:n, â0:n, y0:n|6

)
p (6),

=
1(

2π‖xc‖26
)n/2 exp

−
n∑

n†=0

(
min
εn∈B

∥∥∥yn† − εnân†x(i)n†xTc ∥∥∥2)
2‖xc‖26

 β
γ0
0

0 (γ0)

(
1
6

)γ0+1
exp

(
−
β0

6

)
,

∝
β
γ0
0

0 (γ0)

(
1
6

)γ0+1+n/2
exp

−
β0 +

n∑
n†=1

(
min
εn∈B

∥∥∥yn† − εnân†x(i)n†xTc ∥∥∥2)
/(

2‖xc‖2
)

6

,

=
β
γ0
0

0 (γ0)

(
1
6

)γ (i)n−1+1/2
exp

−
β
(i)
n−1 +

(
min
εn∈B

∥∥∥yn − εnânx(i)n xTc
∥∥∥2)/(

2‖xc‖2
)

6

. (33)

By resorting to the marginalization technique, the marginal
posterior of 6 at time n is computed via:

p (6|y0:n) =
∫
p
(
6|x0:n, â0:n, y0:n

)
dx0:n,

≈

I∑
i=1

p
(
6|x(i)0:n, â0:n, y0:n

)
× w(i)n . (38)

Finally, the unknown noise variance will be estimated via
the following unbiased estimation, i.e.,

6̂n = E(6|y0:n),

≈

I∑
i=1

E(6|x(i)0:n, â0:n, y0:n)× w
(i)
n ,

=

I∑
i=1

β
(i)
n

γ
(i)
n − 1

× w(i)
n . (39)

It is noteworthy that our study focuses on amixed detection
and estimation problem, while the works of [26] and [27] deal
only with a pure estimation problem, by using PF and MPF
technologies. Thus, the developed scheme can be regarded
as a general joint estimation and detection framework, which
utilizes MPF to estimate unknown noise.

D. IMPLEMENTATION
Based on the elaborations above, the new joint detection
algorithm is summarized as follows.

E. COMPLEXITY
Based on the above analysis, we may evaluate the complexity
in terms of the multiplication operations. Firstly, in order to
get observations,O(M ) multiplication operations is required.
Secondly, the complexity of sequential estimations is inde-
pendent of a sampling sizeM , but proportional to the number

of particle, and the complexity is O(QI ), where the multi-
plication operation in calculating likelihood is denoted by Q.
To sum up, the complexity will be measured by O(M +QI ).

IV. NUMERIC SIMULATIONS
In the following numerical simulation and performance eval-
uations, a counterpart method, i.e., traditional MFD sensing,
is used. In the context of unknown fading channels and noise
variance, its decision threshold will be determined by also
maximizing PTD, i.e.,

τMFD = argmax
τMFD

[
p{D,0} + p{D,1}

]
, (40)

where only the partial information of CSI can be available,
i.e., ā = E {A} and θ̄ = E{θ} will be used in classical
MF-based sensing.

In following simulations, we equivalently focus on the
uncertainty of SNR aroused by unknown noise variance,
which is randomly ranged in [−ε, ε] dB. For clarity, the
true value and its initial estimation of signal-to-noise ratio
(SNR) are denoted by SNR and SNR0, respectively. According
to [14], when the noise uncertainty is involved, then the initial
estimation 60 will be distributed randomly around its true
value6, i.e.60 ∼ [(1/ρ)6, ρ6]. Here, ρ > 1 is a parameter
that quantifies the level of uncertainty. When it comes to the
SNR metric, i.e., SNR = 10log(Ex/6), SNR0 will be ranged
randomly in [SNR− ε, SNR+ ε], and ε = 10log(ρ).
It is considered that the proposed algorithm is not relevant

to the signal symbol transmission rate, and hence, we use a
normalized sensing slot time, and in each sense-transmit slot
total M samples are assumed. In practice, this sensing time
can be either set to 1 ms or even to 30 ms, thus the sampling
rate will correspond to 1KHz or 30KHz when M = 10.

As mentioned, the coherent time of time-variant fading
channels, denoted by Tc, will cover many sensing slots with a
interval Ts, i.e., Tc = J × Ts. For the slow-varying fading
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Algorithm 1
For n = 0 : N − 1
1) Estimate the fading state based on MAP criterion:
• Perform the coarse detection and simultaneously
determine whether the current time is the first
switching slot;

• For various cases, the fading state is updated via the
specific mechanism. Here, the noise variance in cal-
culating likelihood functions is the estimation result
of the previous slot (recall that the noise variance is
assumed to be static).

2) Based on the estimation of time-dependent fading states,
the PU’s emission state is identified via PF:
• Draw discrete particles by sampling from an impor-
tance function;

• Update their associated weights recursively;
• Obtain the MAP estimation result via numerical
approximations.

3) Update the noise variance estimation:
• Update the hyper-parameters in a posteriori distribu-
tion of noise variance;

• Obtain the estimation of noise variance via the
marginalization concept.

End

channels [31], the static length J = 1/fdTs may range
from 10 to 50, and correspondingly, the normalized Doppler
frequency shift fDTs will range from 0.02 to 0.1. In practice,
if the sensing time is set to 1ms, the coherent time of channel
will range from 10ms to 50ms. The statistical property of
fading channel is set to be Rayleigh distribution with variance
σ 2
R = 1.5. Given the total number of representative states is
K = 8, then the feasible states A and the corresponding TPM
Pa will be calculated based on (7)-(9).

A. DETECTION PERFORMANCE
We firstly study the effect on sensing performance from var-
ious value of fDTs, the uncertainty boundary ε and the parti-
tioning number K , respectively. Three typical configurations
of ε are adopted, i.e., ε = 3, 5, 10, while the sample sizeM
is 15. In Fig. 3, it is seen that, compared with traditional
MFD scheme, the sensing performance of our new algorithm
will be improved significantly. For example, when the total
right detection probability PTD is 0.9, a rough detection gain
around 3dB will be obtained by the new algorithm.

Then, we compared the sensing performance of our joint
estimation scheme and other existing methods of [19],
in which only the time-variant fading channel is estimated
while the noise uncertainty is not considered. In the simula-
tion, the noise variance in the scheme of [19] was replaced
by one inaccurate estimation60. From the simulation results
in Fig. 4, we find that the noise variance will have little
effects on sensing performance, given the uncertain range
ε < 10 dB. However, as the uncertain range ε increases, the

FIGURE 3. Sensing performance of the proposed joint estimation
algorithm and traditional MFD method under different float rang
boundary ε.

FIGURE 4. Sensing performance of the proposed algorithm and our past
method under different float rang boundary ε.

FIGURE 5. ROC curves of the proposed algorithm and our past method
under different float rang boundary ε.

advantage of the new scheme, by jointly estimating unknown
noise variance, will become remarkable.

In Fig. 5, the receiver operation character (ROC) curve
are further provided. Here, both the proposed scheme and its
counterpart (i.e., MFD without estimating unknown fading)
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FIGURE 6. Sensing performance of the proposed algorithm and
traditional MFD method under different maximum Doppler
frequency shifts fD.

FIGURE 7. Sensing performance of the proposed algorithm and our past
method under different channel state number K .

are assumed to have no priori knowledge on the unknown
noise variance. In the analysis, SNR is set to 4dB, fDTs = 0.05
and M = 15. From the numerical result of ROC curves,
it is demonstrated that the new algorithm can significantly
outperform a classical MFD sensing scheme, by acquiring
unknown noise variance and time-variant channel state jointly
(when performing spectrum sensing).

Furthermore, the effects from various fading channels,
with different maximum Doppler shifts, are studied. In the
simulations, ε is 5, and K is set to 8. The normalized max-
imum Doppler shift is set to be fDTs ∈ {0.1, 0.05, 0.02},
i.e., J ∈ {10, 20, 50}. From Fig. 6, the sensing performance
of the new method will decrease as fDTs increases. This is
easy to understand, i.e., the estimation of fading states will be
refined via the accumulative modifications. To this end, the
slower the channel varies, the more information of coherent
slots will be utilized to promote the estimations. In compar-
ison, if a channel changes too fast, then the refinement will
be inadequate. As a result, the estimation of PU states will be
affected by the coarse detection and tends to be inaccurate.

Finally, we study the effects on sensing performance from
the representative states number K . It is suggested that,

FIGURE 8. MSE vs Iteration number of sense-transmit slots. (a) different
realization. (b) influence on different performance from estimation error.

the larger K is, the higher representation accuracy a FSMC
model has, and also the more complicated the estimation
algorithm is [21]. In order to have the balance between accu-
racy and complexity, the number of representative states K
can be set from 6 to 64, as suggested in [21]. In Fig. 7, differ-
ent values (e.g., K = 5, 8, 10) are investigated via numerical
simulations, which are shown to have little influences on
sensing performances (recall that the fading states have been
jointly estimated by our proposed scheme).

B. ESTIMATION PERFORMANCE
It is shown by Fig. 8(a) that the estimation of unknown noise
variance will be more accurate, as the time slots n increases.
In the simulations, we configure fDTs = 0.1, M = 15
and SNR = 6dB. It is found that the required numbers of
sensing slots, in order to achieve the convergence of noise
estimation, may range from 500 to 1000. Thus, despite the
time-variant fading states, the static unknown variance can
be tracked via the proposed scheme. In Fig. 8(b), we further
demonstrated the change of detection performance, as the
number of sensing slots increases. As noted, the residual
errors of noise estimation will be reduced, when the sensing
slots increases. Simultaneously, we find that the detection
performance will be also affected by different residual errors.
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FIGURE 9. MSE of estimated variance for the noise.

FIGURE 10. MSE of estimated time-variant channel gain.

For a low SNR (e.g., 6dB), the detection performance will be
remarkably affected by residual errors. However, when the
SNR is relatively high (e.g., 10dB), then the detection perfor-
mance may be affected slightly by such residual errors. From
the sensing performance point of view, the necessary number
of sensing slots will be relatively small, e.g., around 400.

Then, the estimation MSE of unknown noise variance
is also evaluated, under different uncertain boundaries ε.
Numerical results are shown in Fig. 9. It seems that the
uncertain boundary ε may have little influences on the esti-
mation MSE of unknown noise variance. In other words, in
different cases the unknown noise variance will be estimated
accurately by the proposed joint estimation scheme.

The estimation MSE performance of time-variant fading
channels, under different maximum Doppler shifts, is plotted
in Fig. 10. It is seen from numerical results that the estimation
accuracy may be degraded, as the maximum Doppler shift
fDTs increases. As analyzed from the previous Fig. 6, the
slower fading channel permits the more sufficient accumula-
tion of historical information, and thereby produces the more
accurate estimation of fading gains.

V. CONCLUSIONS
A new spectrum sensing scheme is designed to address real-
istic challenges aroused by time-variant fading channels and
unknown noise variance.We formulate a novel DSM tomodel
the sensing process, in the absence of exact noise variance,

which gives also the full considerations to dynamic PU states
and channel fading. With the new model, spectrum sensing
is implemented by acquiring time-variant channel states as
well as unknown noise variance jointly. Simulation results are
provided to validate our new algorithm. The formulated DSM
provides a powerful tool for other signal processing of CR,
e.g., spectrum sensing in mobile scenarios. Except for the
improved sensing performance, the estimated noise variance
and fading channels, as the additional link information, may
greatly facilitate subsequence network optimizations. In con-
clusion, our sensing scheme will be of great promise to CR
networks. Future works includes the designing of sensing
schemes in more complicated environments, e.g., the time-
variant noise variances.
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