6 research outputs found

    Syndromic surveillance of respiratory-tract infections and hand hygiene practice among pilgrims attended Hajj in 2021: A cohort study

    No full text
    Background: This cohort study estimated the incidence of symptomatic respiratory tract infections (RTIs) and hand hygiene compliance with its impact among domestic Hajj pilgrims during the COVID-19 pandemic. Methods: During the week of Hajj rituals in 2021, pilgrims were recruited by phone and asked to complete a baseline questionnaire. Pilgrims were followed up after seven days using a questionnaire about the development of symptoms, and practices of hand hygiene. Syndromic definitions were used to clinically diagnose ‘possible’ influenza-like illnesses (ILI) and COVID-19 infection. Results: A total of 510 pilgrims aged between 18 and 69 (median of 50) years completed the questionnaire, 280 (54.9%) of whom were female, and all of them (except for one) were vaccinated against COVID-19 with at least one dose. The mean (±SD) of pilgrims’ hand hygiene knowledge score (on a scale of 0 to 6) was 4.15 (±1.22), and a higher level of knowledge was correlated with a higher frequency of handwashing using soap and water. Among those 445 pilgrims who completed the follow-up form, 21 (4.7%) developed one or more respiratory symptoms, of which sore throat and cough were the commonest (respectively 76.2% and 42.8%); ‘possible ILI’ and ‘possible COVID-19’ were present in 1.1% and 0.9% of pilgrims. Obesity was found to be a significant factor associated with the risk of developing RTIs (odds ratio = 4.45, 95% confidence interval 1.15–17.13). Conclusion: Hajj pilgrims are still at risk of respiratory infections. Further larger and controlled investigations are needed to assess the efficacy of hand hygiene during Hajj

    Prevalence and Antibiogram Pattern of <i>Klebsiella pneumoniae</i> in a Tertiary Care Hospital in Makkah, Saudi Arabia: An 11-Year Experience

    No full text
    Infectious disease is one of the greatest causes of morbidity and mortality worldwide, and with the emergence of antimicrobial resistance, the situation is worsening. In order to prevent this crisis, antimicrobial resistance needs to be monitored carefully to control the spread of multidrug-resistant bacteria. Therefore, in this study, we aimed to determine the prevalence of infection caused by Klebsiella pneumoniae and investigate the antimicrobial profile pattern of K. pneumoniae in the last eleven years. This retrospective study was conducted in a tertiary hospital in Makkah, Saudi Arabia. Data were collected from January 2011 to December 2021. From 2011 to 2021, a total of 61,027 bacterial isolates were collected from clinical samples, among which 14.7% (n = 9014) were K. pneumoniae. The antibiotic susceptibility pattern of K. pneumoniae revealed a significant increase in the resistance rate in most tested antibiotics during the study period. A marked jump in the resistance rate was seen in amoxicillin/clavulanate and piperacillin/tazobactam, from 33.6% and 13.6% in 2011 to 71.4% and 84.9% in 2021, respectively. Ceftazidime, cefotaxime, and cefepime resistance rates increased from 29.9%, 26.2%, and 53.9%, respectively, in 2011 to become 84.9%, 85.1%, and 85.8% in 2021. Moreover, a significant increase in the resistance rate was seen in both imipenem and amikacin, with an average resistance rate rise from 6.6% for imipenem and 11.9% for amikacin in 2011 to 59.9% and 62.2% in 2021, respectively. The present study showed that the prevalence and drug resistance of K. pneumoniae increased over the study period. Thus, preventing hospital-acquired infection and the reasonable use of antibiotics must be implemented to control and reduce antimicrobial resistance

    Isolation and detection of drug-resistant bacterial pathogens in postoperative wound infections at a tertiary care hospital in Saudi Arabia

    No full text
    Background: Surgical site infections (SSIs), especially when caused by multidrug-resistant (MDR) bacteria, are a major healthcare concern worldwide. For optimal treatment and prevention of antimicrobial resistance, it is important for clinicians to be aware of local drug-resistant bacterial pathogens that cause SSIs. Objective: To determine the frequency patterns of drug-resistant bacterial strains causing SSIs at a tertiary care hospital in Saudi Arabia. Methods: This retrospective study was conducted at the Microbiology laboratory of Al-Noor Specialist Hospital, Makkah, Saudi Arabia, and included wound swab samples from all cases of SSI between January 01, 2017, and December 31, 2021. The swabs were processed for the identification of bacterial strains and their resistance pattern to antibiotics according to the Clinical and Laboratory Standards Institute. Results: A total of 5409 wound swabs were analyzed, of which 3604 samples (66.6%) were from male. Most samples were from the Department of Surgery (43.3%). A total of 14 bacterial strains were isolated, of which 9 were Gram-negative bacteria. The most common isolates were Klebsiella pneumoniae, followed by Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and vancomycin-resistant S. aureus (VRSA). In terms of MDR in 2021, the highest rate of carbapenem-resistance was in A. baumannii (97%). MDR was as follows: A. baumannii, 97%; K. pneumoniae, 81%; E. coli, 71%; MRSA, 60%; P. aeruginosa, 33%; VRE, 22%; and VRSA, 2%. Conclusion: This study showed that in the city of Makkah, Saudi Arabia, the rates of MDR bacteria are high, with the majority being Gram-negative

    Comparative Assessment of Antimicrobial Efficacy of Seven Surface Disinfectants against Eight Bacterial Strains in Saudi Arabia: An In Vitro Study

    No full text
    Environmental conditions in hospitals facilitate the growth and spread of pathogenic bacteria on surfaces such as floors, bed rails, air ventilation units, and mobile elements. These pathogens may be eliminated with proper disinfecting processes, including the use of appropriate surface disinfectants. In this study, we aimed to evaluate of the antibacterial effects of seven surface disinfectants (HAMAYA, DAC, AJAX, Jif, Mr. MUSCLE, CLOROX, and BACTIL) against eight bacterial strains Klebsiella pneumoniae, Enterobacter aerogenes, Acinetobacter baumannii, Serratia marcescens, Escherichia coli, vancomycin-resistant Enterococcus faecalis-ATCC 51299, methicillin-resistant Staphylococcus aureus-ATCC 43300, and Pseudomonas aeruginosa-ATCC 1544, using two methods. The first was to determine the effective contact time of disinfectant against the tested bacterial strains, and the second was an assessment of the disinfection efficacy of each disinfectant on six types of contaminated surfaces with on a mixture of the eight tested bacterial strains. The results showed the efficacy of the disinfectants against the tested strains depending on the effective contact time. BACTIL disinfectant showed an efficacy of 100% against all tested strains at the end of the first minute of contact time. HAMAYA, DAC, Jif, Mr. MUSCLE, and CLOROX showed 100% efficiency at the end of the fourth, fifth, sixth, seventh, and fourteenth minutes, respectively, while AJAX disinfectant required nineteen minutes of contact time to show 100% efficacy against all tested strains

    Environmentally friendly production, characterization, and evaluation of ZnO NPs from Bixa orellana leaf extract and assessment of its antimicrobial activity

    No full text
    Zinc oxide nanoparticles (ZnO NPs) are establishing themselves as an important class of nanomaterials due to their exceptional physicochemical properties and wide range of applications. Due to their affordability, lack of toxicity, and strong biocompatibility, ZnO NPs find extensive use in the field of biomedicine. ZnO NPs are promising in biomedicine, especially for their ability as anticancer and antimicrobial agents. The ecologically sustainable preparation of metallic NPs using different plant extracts is a viable alternative to more conventional synthesis methods. The present study investigates the effects of changing the physical conditions on ZnO NPs synthesis from Bixa orellana (B. orellana) extract using the precipitation method. Confirmation and characterization of the ZnO NPs were achieved by analytical techniques. EDS results verified that highly pure ZnO NPs were synthesized. X-ray diffraction analysis verified the crystal nature of the synthesized NPs and their crystalline particle size of 82.66 nm. The XRD graphs strongly indicate the formation of wurtzite ZnO due to the presence of the (100), (002), and (101) planes. The antibacterial activity was assessed through the utilization of agar disc diffusion. The findings revealed that ZnO NPs exhibited significant efficacy in inhibiting the growth of both Gram-positive and Gram-negative bacteria. The zone of inhibition with the greatest diameter (22 mm) was reported for the bacterial strain B. cereus. The present investigation provides evidence that B. orellana leaves extract is capable of producing ZnO NPs, which play a crucial role in its antibacterial action. Additional investigation is necessary to validate the role of diverse phytochemicals in the synthesis of ZnO NPs and their applications in diverse fields such as agriculture, cosmetics, food, and healthcare

    Comparative analysis of genome sequences covering the seven cronobacter species

    Get PDF
    Species of Cronobacter are widespread in the environment and are occasional food-borne pathogens associated with serious neonatal diseases, including bacteraemia, meningitis, and necrotising enterocolitis. The genus is composed of seven species: C. sakazakii, C. malonaticus, C. turicensis, C. dublinensis, C. muytjensii, C. universalis, and C. condimenti. Clinical cases are associated with three species, C. malonaticus, C. turicensis and, in particular, with C. sakazakii multilocus sequence type 4. Thus, it is plausible that virulence determinants have evolved in certain lineages.We generated high quality sequence drafts for eleven Cronobacter genomes representing the seven Cronobacter species, including an ST4 strain of C. sakazakii. Comparative analysis of these genomes together with the two publicly available genomes revealed Cronobacter has over 6,000 genes in one or more strains and over 2,000 genes shared by all Cronobacter. Considerable variation in the presence of traits such as type six secretion systems, metal resistance (tellurite, copper and silver), and adhesins were found. C. sakazakii is unique in the Cronobacter genus in encoding genes enabling the utilization of exogenous sialic acid which may have clinical significance. The C. sakazakii ST4 strain 701 contained additional genes as compared to other C. sakazakii but none of them were known specific virulence-related genes.Genome comparison revealed that pair-wise DNA sequence identity varies between 89 and 97% in the seven Cronobacter species, and also suggested various degrees of divergence. Sets of universal core genes and accessory genes unique to each strain were identified. These gene sequences can be used for designing genus/species specific detection assays. Genes encoding adhesins, T6SS, and metal resistance genes as well as prophages are found in only subsets of genomes and have contributed considerably to the variation of genomic content. Differences in gene content likely contribute to differences in the clinical and environmental distribution of species and sequence types
    corecore