7 research outputs found

    Auditory sustained field responses to periodic noise

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Auditory sustained responses have been recently suggested to reflect neural processing of speech sounds in the auditory cortex. As periodic fluctuations below the pitch range are important for speech perception, it is necessary to investigate how low frequency periodic sounds are processed in the human auditory cortex. Auditory sustained responses have been shown to be sensitive to temporal regularity but the relationship between the amplitudes of auditory evoked sustained responses and the repetitive rates of auditory inputs remains elusive. As the temporal and spectral features of sounds enhance different components of sustained responses, previous studies with click trains and vowel stimuli presented diverging results. In order to investigate the effect of repetition rate on cortical responses, we analyzed the auditory sustained fields evoked by periodic and aperiodic noises using magnetoencephalography.</p> <p>Results</p> <p>Sustained fields were elicited by white noise and repeating frozen noise stimuli with repetition rates of 5-, 10-, 50-, 200- and 500 Hz. The sustained field amplitudes were significantly larger for all the periodic stimuli than for white noise. Although the sustained field amplitudes showed a rising and falling pattern within the repetition rate range, the response amplitudes to 5 Hz repetition rate were significantly larger than to 500 Hz.</p> <p>Conclusions</p> <p>The enhanced sustained field responses to periodic noises show that cortical sensitivity to periodic sounds is maintained for a wide range of repetition rates. Persistence of periodicity sensitivity below the pitch range suggests that in addition to processing the fundamental frequency of voice, sustained field generators can also resolve low frequency temporal modulations in speech envelope.</p

    Non-linear laws of echoic memory and auditory change detection in humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The detection of any abrupt change in the environment is important to survival. Since memory of preceding sensory conditions is necessary for detecting changes, such a change-detection system relates closely to the memory system. Here we used an auditory change-related N1 subcomponent (change-N1) of event-related brain potentials to investigate cortical mechanisms underlying change detection and echoic memory.</p> <p>Results</p> <p>Change-N1 was elicited by a simple paradigm with two tones, a standard followed by a deviant, while subjects watched a silent movie. The amplitude of change-N1 elicited by a fixed sound pressure deviance (70 dB vs. 75 dB) was negatively correlated with the logarithm of the interval between the standard sound and deviant sound (1, 10, 100, or 1000 ms), while positively correlated with the logarithm of the duration of the standard sound (25, 100, 500, or 1000 ms). The amplitude of change-N1 elicited by a deviance in sound pressure, sound frequency, and sound location was correlated with the logarithm of the magnitude of physical differences between the standard and deviant sounds.</p> <p>Conclusions</p> <p>The present findings suggest that temporal representation of echoic memory is non-linear and Weber-Fechner law holds for the automatic cortical response to sound changes within a suprathreshold range. Since the present results show that the behavior of echoic memory can be understood through change-N1, change-N1 would be a useful tool to investigate memory systems.</p

    Measurements of bone conduction auditory brainstem response with the new audiometric bone conduction transducer Radioear B81

    No full text
    Objective: To compare recordings of bone conduction (BC) stimulated auditory brainstem response (ABR) obtained using the newer BC transducer Radioear B81 and the conventional BC transducer Radioear B71. Balanced electromagnetic separation transducer (BEST) design found in the B81 may influence the ABR magnitudes and latencies, as well as electrical artefacts. Design: ABRs to tone burst stimuli of 500 Hz, 2000 Hz, 4000 Hz, click stimulation, and broad-band chirp stimulation at 20 and 50dB nHL were recorded. For each device, stimulus and intensity level, the ABR Jewett wave V amplitude and latency were obtained. The device-related electrical stimulus artefacts on the ABR recordings were also analysed by calculating the Hilbert envelope of the peri-stimulus recording segments. Study sample: Twenty-three healthy adults with normal hearing were included in the study. Results: The ABRs obtained by the B81 were similar to that of the B71 in terms of ABR wave V amplitude and latency. However, the B81 produced smaller electrical artefacts than B71 and this difference was statistically significant. Conclusions: The BC transducer Radioear B81 provides ABRs comparable to Radioear B71 while causing smaller artefacts.Funding Agencies|Horselforskningsfonden [2014-465]</p

    Prepulse inhibition of auditory change-related cortical responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prepulse inhibition (PPI) of the startle response is an important tool to investigate the biology of schizophrenia. PPI is usually observed by use of a startle reflex such as blinking following an intense sound. A similar phenomenon has not been reported for cortical responses.</p> <p>Results</p> <p>In 12 healthy subjects, change-related cortical activity in response to an abrupt increase of sound pressure by 5 dB above the background of 65 dB SPL (test stimulus) was measured using magnetoencephalography. The test stimulus evoked a clear cortical response peaking at around 130 ms (Change-N1m). In Experiment 1, effects of the intensity of a prepulse (0.5 ~ 5 dB) on the test response were examined using a paired stimulation paradigm. In Experiment 2, effects of the interval between the prepulse and test stimulus were examined using interstimulus intervals (ISIs) of 50 ~ 350 ms. When the test stimulus was preceded by the prepulse, the Change-N1m was more strongly inhibited by a stronger prepulse (Experiment 1) and a shorter ISI prepulse (Experiment 2). In addition, the amplitude of the test Change-N1m correlated positively with both the amplitude of the prepulse-evoked response and the degree of inhibition, suggesting that subjects who are more sensitive to the auditory change are more strongly inhibited by the prepulse.</p> <p>Conclusions</p> <p>Since Change-N1m is easy to measure and control, it would be a valuable tool to investigate mechanisms of sensory gating or the biology of certain mental diseases such as schizophrenia.</p
    corecore