9 research outputs found
Cytoprotective Activated Protein C Averts Nlrp3 Inflammasome–Induced Ischemia-Reperfusion Injury Via Mtorc1 Inhibition
Cytoprotection by activated protein C (aPC) after ischemia-reperfusion injury (IRI) is associated with apoptosis inhibition. However, IRI is hallmarked by inflammation, and hence, cell-death forms disjunct from immunologically silent apoptosis are, in theory, more likely to be relevant. Because pyroptosis (ie, cell death resulting from inflammasome activation) is typically observed in IRI, we speculated that aPC ameliorates IRI by inhibiting inflammasome activation. Here we analyzed the impact of aPC on inflammasome activity in myocardial and renal IRIs. aPC treatment before or after myocardial IRI reduced infarct size and Nlrp3 inflammasome activation in mice. Kinetic in vivo analyses revealed that Nlrp3 inflammasome activation preceded myocardial injury and apoptosis, corroborating a pathogenic role of the Nlrp3 inflammasome. The constitutively active Nlrp3A350V mutation abolished the protective effect of aPC, demonstrating that Nlrp3 suppression is required for aPC-mediated protection from IRI. In vitro aPC inhibited inflammasome activation in macrophages, cardiomyocytes, and cardiac fibroblasts via proteinase-activated receptor 1 (PAR-1) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Accordingly, inhibiting PAR-1 signaling, but not the anticoagulant properties of aPC, abolished the ability of aPC to restrict Nlrp3 inflammasome activity and tissue damage in myocardial IRI. Targeting biased PAR-1 signaling via parmodulin-2 restricted mTORC1 and Nlrp3 inflammasome activation and limited myocardial IRI as efficiently as aPC. The relevance of aPC-mediated Nlrp3 inflammasome suppression after IRI was corroborated in renal IRI, where the tissue protective effect of aPC was likewise dependent on Nlrp3 inflammasome suppression. These studies reveal that aPC protects from IRI by restricting mTORC1-dependent inflammasome activation and that mimicking biased aPC PAR-1 signaling using parmodulins may be a feasible therapeutic approach to combat IRI
High-Density Lipoprotein Modifications:A Pathological Consequence or Cause of Disease Progression?
High-density lipoprotein (HDL) is well-known for its cardioprotective effects, as it possesses anti-inflammatory, anti-oxidative, anti-thrombotic, and cytoprotective properties. Traditionally, studies and therapeutic approaches have focused on raising HDL cholesterol levels. Recently, it became evident that, not HDL cholesterol, but HDL composition and functionality, is probably a more fruitful target. In disorders, such as chronic kidney disease or cardiovascular diseases, it has been observed that HDL is modified and becomes dysfunctional. There are different modification that can occur, such as serum amyloid, an enrichment and oxidation, carbamylation, and glycation of key proteins. Additionally, the composition of HDL can be affected by changes to enzymes such as cholesterol ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), and phospholipid transfer protein (PLTP) or by modification to other important components. This review will highlight some main modifications to HDL and discuss whether these modifications are purely a consequential result of pathology or are actually involved in the pathology itself and have a causal role. Therefore, HDL composition may present a molecular target for the amelioration of certain diseases, but more information is needed to determine to what extent HDL modifications play a causal role in disease development
PCSK9 Imperceptibly Affects Chemokine Receptor Expression In Vitro and In Vivo
Proprotein convertase subtilin/kexin type 9 (PCSK9) is a protease secreted mainly by hepatocytes and in lesser quantities by intestines, pancreas, and vascular cells. Over the years, this protease has gained importance in the field of cardiovascular biology due to its regulatory action on the low-density lipoprotein receptor (LDLR). However, recently, it has also been shown that PCSK9 acts independent of LDLR to cause vascular inflammation and increase the severity of several cardiovascular disorders. We hypothesized that PCSK9 affects the expression of chemokine receptors, major mediators of inflammation, to influence cardiovascular health. However, using overexpression of PCSK9 in murine models in vivo and PCSK9 stimulation of myeloid and vascular cells in vitro did not reveal influences of PCSK9 on the expression of certain chemokine receptors that are known to be involved in the development and progression of atherosclerosis and vascular inflammation. Hence, we conclude that the inflammatory effects of PCSK9 are not associated with the here investigated chemokine receptors and additional research is required to elucidate which mechanisms mediate PCSK9 effects independent of LDLR
Interaction between high-density lipoproteins and inflammation:Function matters more than concentration!
High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed. (C) 2020 The Author(s). Published by Elsevier B.V
Interaction between high-density lipoproteins and inflammation: Function matters more than concentration!
High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed. (C) 2020 The Author(s). Published by Elsevier B.V
Adipocyte calcium sensing receptor is not involved in visceral adipose tissue inflammation or atherosclerosis development in hyperlipidemic Apoe-/- mice.
The calcium sensing receptor (CaSR) is a G-protein coupled receptor that especially plays an important role in the sensing of extracellular calcium to maintain its homeostasis. Several in-vitro studies demonstrated that CaSR plays a role in adipose tissue metabolism and inflammation, resulting in systemic inflammation and contributing to atherosclerosis development. The aim of this study was to investigate whether adipocyte CaSR plays a role in adipose tissue inflammation in-vivo and atherosclerosis development. By using a newly established conditional mature adipocyte specific CaSR deficient mouse on a hyperlipidemic and atherosclerosis prone Apoe-/- background it could be shown that CaSR deficiency in adipocytes does neither contribute to initiation nor to progression of atherosclerotic plaques as judged by the unchanged lesion size or composition. Additionally, CaSR deficiency did not influence gonadal visceral adipose tissue (vAT) inflammation in-vivo, although a small decrease in gonadal visceral adipose cholesterol content could be observed. In conclusion, adipocyte CaSR seems not to be involved in vAT inflammation in-vivo and does not influence atherosclerosis development in hyperlipidemic Apoe-/- mice