138 research outputs found

    Quantum Communication in 6G Satellite Networks: Entanglement Distribution Across Changing Topologies

    Full text link
    As LEO/VLEO satellites offer many attractive features, such as low transmission delay, they are expected to be an integral part of 6G. Global entanglement distribution over LEO and VLEO satellites network must reckon with satellite movement over time. Current studies do not fully capture the dynamic nature of satellite constellations. We model a dynamic LEO/VLEO satellite network as a time-varying graph and construct a sequence of static graphs to represent a dynamic network. We study the entanglement distribution problem between a set of source-destination node pairs in this dynamic network utilizing Multi-commodity Flow (MCF). Solving MCF over a sequence of graphs independently for each graph may produce a completely different set of paths. Changing the set of paths every time the graph topology changes may involve a significant amount of overhead, as an established set of paths must be taken down and a new set of paths established. We propose a technique that will avoid this overhead by computing only one set of paths P to be used over all the graphs in the sequence. The degraded performance offered by P may be viewed as the cost of using P. The benefit of using P is the overhead cost of path switching that can be avoided. We provide a cost-benefit analysis in a LEO/VLEO constellation for entanglement distribution between multiple source-destination pairs. Our extensive experimentation shows that a significant amount of savings in overhead can be achieved if one is willing to accept a slightly degraded performance

    Methodologies for Selection of Optimal Sites for Renewable Energy Under a Diverse Set of Constraints and Objectives

    Full text link
    In this paper, we present methodologies for optimal selection for renewable energy sites under a different set of constraints and objectives. We consider two different models for the site-selection problem - coarse-grained and fine-grained, and analyze them to find solutions. We consider multiple different ways to measure the benefits of setting up a site. We provide approximation algorithms with a guaranteed performance bound for two different benefit metrics with the coarse-grained model. For the fine-grained model, we provide a technique utilizing Integer Linear Program to find the optimal solution. We present the results of our extensive experimentation with synthetic data generated from sparsely available real data from solar farms in Arizona

    Characterizing the Vertical Processes of Ozone in Colorado's Front Range Using the GSFC Ozone Dial

    Get PDF
    Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZDIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins,Colorado.The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase a loft during recirculation episodes has been historically difficult, results indicate that an increase of 20 -30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate the stratospheric contribution to the Rocky Mountain region. Results suggest that a large amount of stratospheric air is residing in the troposphere in the summertime near Ft. Collins, CO. The results also indicate that warmer tropopauses are correlated with an increase in stratospheric air below the tropopause in the Rocky Mountain Region

    STROZ Lidar Results at the MOHAVE III Campaign, October, 2009, Table Mountain, CA

    Get PDF
    During October, 2009 the GSFC STROZ Lidar participated in a campaign at the JPL Table Mountain Facility (Wrightwood, CA, 2285 m Elevation) to measure vertical profiles of water vapor from near the ground to the lower stratosphere. On eleven nights, water vapor, aerosol, temperature and ozone profiles were measured by the STROZ lidar, two other similar lidars, frost-point hygrometer sondes, and ground-based microwave instruments made measurements. Results from these measurements and an evaluation of the performance of the STROZ lidar during the campaign will be presented in this paper. The STROZ lidar was able to measure water vapor up to 13-14 km ASL during the campaign. We will present results from all the STROZ data products and comparisons with other instruments made. Implications for instrumental changes will be discussed

    A New Differential Absorption Lidar to Measure Sub-Hourly Fluctuation of Tropospheric Ozone Profiles in the Baltimore - Washington D.C. Region

    Get PDF
    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99 N, 76.84 W, 57 meters ASL) from 400 m to 12 km AGL. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19 percent from 0-1.5 km, 10-18 percent from 1.5-3 km, and 11-25 percent from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington DC area

    Lidar Validation Measurements at the NOAA Mauna Loa Observatory NDACC Station

    Get PDF
    NASA's Goddard Space Flight Center (GSFC) transported two lidar instruments to the NOAA facility at the Mauna Loa Observatory (MLO) on the Big Island of Hawaii, to participate in an official, extended validation campaign. This site is situated 11,141 ft. above sea level on the side of the mountain. The observatory has been making atmospheric measurements regularly since the 1950's, and has hosted the GSFC Stratospheric Ozone (STROZ) Lidar and the GSFC Aerosol and Temperature (AT) Lidar on several occasions, most recently between November, 2012 and November, 2015. The purpose of this extended deployment was to participate in Network for the Detection of Atmospheric Composition Change (NDACC) Validation campaigns with the JPL Stratospheric Ozone Lidar and the NOAA Temperature, Aerosol and Water Vapor instruments as part of the routine NDACC Validation Protocol

    A three-dimensional mathematical model of the kraft recovery furnace

    Get PDF
    "February, 1989.""This manuscript is based on results obtained in IPC research and is to be presented at the International Chemical Recovery Conference in Ottawa on April 3-6, 1989.

    Monocyte Adhesion to Activated Aortic Endothelium: Role of L-Selectin and Heparan Sulfate Proteoglycans

    Get PDF
    This study examines the role of L-selectin in monocyte adhesion to arterial endothelium, a key pathogenic event of atherosclerosis. Using a nonstatic (rotation) adhesion assay, we observed that monocyte binding to bovine aortic endothelium at 4°C increased four to nine times upon endothelium activation with tumor necrosis factor (TNF)-α. mAb-blocking experiments demonstrated that L-selectin mediates a major part (64 ± 18%) of monocyte attachment. Videomicroscopy experiments performed under flow indicated that monocytes abruptly halted on 8-h TNF-α–activated aortic endothelium, ∼80% of monocyte attachment being mediated by L-selectin. Flow cytometric studies with a L-selectin/IgM heavy chain chimeric protein showed calcium-dependent L-selectin binding to cytokine-activated and, unexpectedly, unactivated aortic cells. Soluble L-selectin binding was completely inhibited by anti–L-selectin mAb or by aortic cell exposure to trypsin. Experiments with cycloheximide, chlorate, or neuraminidase showed that protein synthesis and sulfate groups, but not sialic acid residues, were essential for L-selectin counterreceptor function. Moreover, heparin lyases partially inhibited soluble L-selectin binding to cytokine-activated aortic cells, whereas a stronger inhibition was seen with unstimulated endothelial cells, suggesting that cytokine activation could induce the expression of additional ligand(s) for L-selectin, distinct from heparan sulfate proteoglycans. Under flow, endothelial cell treatment with heparinase inhibited by ∼80% monocyte attachment to TNF-α–activated aortic endothelium, indicating a major role for heparan sulfate proteoglycans in monocyte–endothelial interactions. Thus, L-selectin mediates monocyte attachment to activated aortic endothelium, and heparan sulfate proteoglycans serve as arterial ligands for monocyte L-selectin

    Taehwa Research Forest: a receptor site for severe domestic pollution events in Korea during 2016

    Get PDF
    During the May–June 2016 International Cooperative Air Quality Field Study in Korea (KORUS-AQ), light synoptic meteorological forcing facilitated Seoul metropolitan pollution outflow to reach the remote Taehwa Research Forest (TRF) site and cause regulatory exceedances of ozone on 24 days. Two of these severe pollution events are thoroughly examined. The first, occurring on 17 May 2016, tracks transboundary pollution transport exiting eastern China and the Yellow Sea, traversing the Seoul Metropolitan Area (SMA), and then reaching TRF in the afternoon hours with severely polluted conditions. This case study indicates that although outflow from China and the Yellow Sea were elevated with respect to chemically unperturbed conditions, the regulatory exceedance at TRF was directly linked in time, space, and altitude to urban Seoul emissions. The second case studied, which occurred on 9 June 2016, reveals that increased levels of biogenic emissions, in combination with amplified urban emissions, were associated with severe levels of pollution and a regulatory exceedance at TRF. In summary, domestic emissions may be causing more pollution than by transboundary pathways, which have been historically believed to be the major source of air pollution in South Korea. The case studies are assessed with multiple aircraft, model (photochemical and meteorological) simulations, in situ chemical sampling, and extensive ground-based profiling at TRF. These observations clearly identify TRF and the surrounding rural communities as receptor sites for severe pollution events associated with Seoul outflow, which will result in long-term negative effects to both human health and agriculture in the affected areas.</p
    corecore