13,807 research outputs found

    Visual detection of point source targets

    Get PDF
    Visual detection of point source targets in simulated star field backgroun

    On the stability of the boundary of the geomagnetic field

    Get PDF
    Dynamic response determination of geomagnetic field boundary in steady solar wind to small initial disturbance from equilibrium configuratio

    A Fluid Model for the Interaction of the Solar Wind and the Geomagnetic Field

    Get PDF
    Solar wind and geomagnetic field interaction in terms of continuum theory of fluid flo

    Pathology in Practice

    Get PDF

    Anger, Quality of Life and Mood in Multiple Sclerosis

    Get PDF
    This research was funded by The Multiple Sclerosis Society (UK).Peer reviewedPublisher PD

    A 233 km Tunnel for Lepton and Hadron Colliders

    Full text link
    A decade ago, a cost analysis was conducted to bore a 233 km circumference Very Large Hadron Collider (VLHC) tunnel passing through Fermilab. Here we outline implementations of e+ee^+e^-, ppˉp \bar{p}, and μ+μ\mu^+ \mu^- collider rings in this tunnel using recent technological innovations. The 240 and 500 GeV e+ee^+e^- colliders employ Crab Waist Crossings, ultra low emittance damped bunches, short vertical IP focal lengths, superconducting RF, and low coercivity, grain oriented silicon steel/concrete dipoles. Some details are also provided for a high luminosity 240 GeV e+ee^+ e^- collider and 1.75 TeV muon accelerator in a Fermilab site filler tunnel. The 40 TeV ppˉp \bar{p} collider uses the high intensity Fermilab pˉ\bar{p} source, exploits high cross sections for ppˉp \bar{p} production of high mass states, and uses 2 Tesla ultra low carbon steel/YBCO superconducting magnets run with liquid neon. The 35 TeV muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds, uses 250 GV of superconducting RF to accelerate muons from 1.75 to 17.5 TeV in 63 orbits with 71% survival, and mitigates neutrino radiation with phase shifting, roller coaster motion in a FODO lattice.Comment: LaTex, 6 pages, 1 figure, Advanced Accelerator Concepts Workshop, Austin, TX, 10-15 June 201

    Probabilistic computer model of optimal runway turnoffs

    Get PDF
    Landing delays are currently a problem at major air carrier airports and many forecasters agree that airport congestion will get worse by the end of the century. It is anticipated that some types of delays can be reduced by an efficient optimal runway exist system allowing increased approach volumes necessary at congested airports. A computerized Probabilistic Runway Turnoff Model which locates exits and defines path geometry for a selected maximum occupancy time appropriate for each TERPS aircraft category is defined. The model includes an algorithm for lateral ride comfort limits

    Nonlocal hydrodynamic influence on the dynamic contact angle: Slip models versus experiment

    Get PDF
    Experiments reported by Blake et al. [Phys. Fluids. 11, 1995 (1999)] suggest that the dynamic contact angle formed between the free surface of a liquid and a moving solid boundary at a fixed contact-line speed depends on the flow field/geometry near the moving contact line. The present paper examines quantitatively whether or not it is possible to attribute this effect to bending of the free surface due to hydrodynamic stresses acting upon it and hence interpret the results in terms of the so-called ``apparent'' contact angle. It is shown that this is not the case. Numerical analysis of the problem demonstrates that, at the spatial resolution reported in the experiments, the variations of the ``apparent'' contact angle (defined in two different ways) caused by variations in the flow field, at a fixed contact-line speed, are too small to account for the observed effect. The results clearly indicate that the actual (macroscopic) dynamic contact angle, i.e.\ the one used in fluid mechanics as a boundary condition for the equation determining the free surface shape, must be regarded as dependent not only on the contact-line speed but also on the flow field/geometry in the vicinity of the moving contact line
    corecore