108 research outputs found
The malleable brain: plasticity of neural circuits and behavior: A review from students to students
One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation (LTP) and long-term depression (LTD) respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by LTP and LTD, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity.Fil: Schaefer, Natascha. University of Wuerzburg; AlemaniaFil: Rotermund, Carola. University of Tuebingen; AlemaniaFil: Blumrich, Eva Maria. Universitat Bremen; AlemaniaFil: Lourenco, Mychael V.. Universidade Federal do Rio de Janeiro; BrasilFil: Joshi, Pooja. Robert Debre Hospital; FranciaFil: Hegemann, Regina U.. University of Otago; Nueva ZelandaFil: Jamwal, Sumit. ISF College of Pharmacy; IndiaFil: Ali, Nilufar. Augusta University; Estados UnidosFil: García Romero, Ezra Michelet. Universidad Veracruzana; MéxicoFil: Sharma, Sorabh. Birla Institute of Technology and Science; IndiaFil: Ghosh, Shampa. Indian Council of Medical Research; IndiaFil: Sinha, Jitendra K.. Indian Council of Medical Research; IndiaFil: Loke, Hannah. Hudson Institute of Medical Research; AustraliaFil: Jain, Vishal. Defence Institute of Physiology and Allied Sciences; IndiaFil: Lepeta, Katarzyna. Polish Academy of Sciences; ArgentinaFil: Salamian, Ahmad. Polish Academy of Sciences; ArgentinaFil: Sharma, Mahima. Polish Academy of Sciences; ArgentinaFil: Golpich, Mojtaba. University Kebangsaan Malaysia Medical Centre; MalasiaFil: Nawrotek, Katarzyna. University Of Lodz; ArgentinaFil: Paid, Ramesh K.. Indian Institute of Chemical Biology; IndiaFil: Shahidzadeh, Sheila M.. Syracuse University; Estados UnidosFil: Piermartiri, Tetsade. Universidade Federal de Santa Catarina; BrasilFil: Amini, Elham. University Kebangsaan Malaysia Medical Centre; MalasiaFil: Pastor, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia ; ArgentinaFil: Wilson, Yvette. University of Melbourne; AustraliaFil: Adeniyi, Philip A.. Afe Babalola University; NigeriaFil: Datusalia, Ashok K.. National Brain Research Centre; IndiaFil: Vafadari, Benham. Polish Academy of Sciences; ArgentinaFil: Saini, Vedangana. University of Nebraska; Estados UnidosFil: Suárez Pozos, Edna. Instituto Politécnico Nacional; MéxicoFil: Kushwah, Neetu. Defence Institute of Physiology and Allied Sciences; IndiaFil: Fontanet, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia ; ArgentinaFil: Turner, Anthony J.. University of Leeds; Reino Unid
Isolation, identification and bioactive potential of bacterial endophytes from Coleus
Coleus (Lamiaceae) is a large and widespread genus comprising of species with diverse ethnobotanical uses. In the present study, bacterial endophytes were isolated from Coleus forskohlii and Coleus aromaticus. Endophytes are the microorganisms which reside within the plants without showing any harmful effect on its host. Diverse types of endophytes live symbiotically within almost all plants and in turn help the plant in a number of ways such as imparting resistance against biotic and abiotic stresses, producing compounds involved in attraction of pollinators, inducing the plant defense mechanisms, etc. The bacterial endophytes isolated in this study, were characterized by microscopic examination (using gram staining) and molecularly identified by sequencing the 16S rRNA. Extracts were prepared from endophytic biomass using solvents of different polarities (methanol, ethyl acetate and butanol) and were screened for their bioactive potential (in vitro cytotoxicity anti-microbial, and anti-oxidant activity). Scale-up of endophytes showing promising results is under process, which will help in isolation of pure compounds
A Scoping Review and Preliminary Illustrative Analysis of Biomarkers in Stress-Related Psychiatric Illness: Diagnostic and Prognostic Implications
Stress is the body's response to any changes that might place it under mental, emotional, or physical strain and could either demand attention or prompt action. A stress reaction can be brought on by both internal and external factors. The conditions, demands, issues, and expectations you deal with every day are all regarded as external influences, as are your physical surroundings, your job, your contacts with others, your family, and all other related factors. The ability of your body to respond to and handle external stimuli depends on internal factors. Your ability to handle stress is influenced internally by your food habits, level of general health and fitness, mental health, and the amount of sleep and rest you get. Such demanding conditions could affect how certain stress hormone levels are regulated. Biomarkers such as mGlu2/3, 5-hydroxyindoleacetic acid (5-HIAA), serum alpha-amylase, amygdala reactivity, neuropeptide Y (NPY), heat shock proteins, cortisol, and catecholamines are used to assess the hormone imbalance. Disease prevention, early detection, and therapy are all possible uses for biomarkers. In this review, we looked at a wide range of stress-related biomarkers that might cause different psychiatric illnesses and how those conditions can, over time, alter a person's lifestyle
P3‐324: Beneficial effect of spermidine against 3‐nitropropionic acid‐induced neurotoxicity in rats: Possible neurotransmitter modulation
P2‐116: L‐Theanine Spares Striatal Neurons From 3‐NP–Induced Striatal Neurotoxicity: Role of Nitric Oxide Pathway
Spermidine ameliorates 3-nitropropionic acid (3-NP)-induced striatal toxicity: Possible role of oxidative stress, neuroinflammation, and neurotransmitters
Beneficial effect of antidepressants against rotenone induced Parkinsonism like symptoms in rats
Protective Effect of Agomelatine on Traumatic Brain Injury Induced Cognitive Deficit in Rats: Possible Role of Neurotransmitters
- …
