6 research outputs found

    Intracellular Trafficking of the Amyloid β-Protein Precursor (APP) Regulated by Novel Function of X11-Like

    Get PDF
    Background: Amyloid beta (A beta), a causative peptide of Alzheimer's disease, is generated by intracellular metabolism of amyloid beta-protein precursor (APP). In general, mature APP (mAPP, N- and O-glycosylated form) is subject to successive cleavages by alpha- or beta-, and gamma-secretases in the late protein secretory pathway and/or at plasma membrane, while immature APP (imAPP, N-glycosylated form) locates in the early secretory pathway such as endoplasmic reticulum or cis-Golgi, in which imAPP is not subject to metabolic cleavages. X11-like (X11L) is a neural adaptor protein composed of a phosphotyrosine-binding (PTB) and two C-terminal PDZ domains. X11L suppresses amyloidogenic cleavage of mAPP by direct binding of X11L through its PTB domain, thereby generation of A beta lowers. X11L expresses another function in the regulation of intracellular APP trafficking. Methodology: In order to analyze novel function of X11L in intracellular trafficking of APP, we performed a functional dissection of X11L. Using cells expressing various domain-deleted X11L mutants, intracellular APP trafficking was examined along with analysis of APP metabolism including maturation (O-glycosylation), processing and localization of APP. Conclusions: X11L accumulates imAPP into the early secretory pathway by mediation of its C-terminal PDZ domains, without being bound to imAPP directly. With this novel function, X11L suppresses overall APP metabolism and results in further suppression of Ab generation. Interestingly some of the accumulated imAPP in the early secretory pathway are likely to appear on plasma membrane by unidentified mechanism. Trafficking of imAPP to plasma membrane is observed in other X11 family proteins, X11 and X11L2, but not in other APP-binding partners such as FE65 and JIP1. It is herein clear that respective functional domains of X11L regulate APP metabolism at multiple steps in intracellular protein secretory pathways

    XB51 isoforms mediate Alzheimer's beta-amyloid peptide production by X11L (X11-like protein)-dependent and -independent mechanisms.

    No full text
    XB51 (derived from X11-like binding protein of clone number 51) was isolated by yeast two-hybrid cDNA screening using the N-terminal domain of X11L (X11-like protein) as a bait. X11L is a neuron-specific adaptor protein that is known to down-regulate APP (beta-amyloid precursor protein) metabolism by associating with the cytoplasmic domain of APP, but the detailed mechanisms are still unknown. Thus the X11L-associated protein XB51 is believed to regulate APP metabolism by modifying X11L function through its interaction with X11L. Here we report that the hXB51 (human XB51 ) gene can yield two transcripts, one with exon 9 spliced out (resulting in the hXB51beta isoform) and the other containing exon 9 (yielding the hXB51alpha isoform). hXB51alpha binds to X11L to form a tripartite complex composed of hXB51alpha, X11L and APP. Complex-formation results in blocking X11L's suppression of Abeta (beta-amyloid) generation from APP. hXB51beta associates with X11L and inhibits its interaction with APP. However, hXB51beta suppresses Abeta generation and secretion in an X11L-independent manner. Thus the hXB51 isoforms regulate Abeta generation differently, either enhancing it by modifying the association of X11L with APP or suppressing it in an X11L-independent manner. These observations advance our understanding of the molecular mechanisms regulating intracellular Abeta production and the pathogenesis of Alzheimer's disease
    corecore