21 research outputs found

    Coincidence between transcriptome analyses on different microarray platforms using a parametric framework

    Get PDF
    A parametric framework for the analysis of transcriptome data is demonstrated to yield coincident results when applied to data acquired using two different microarray platforms. Discrepancies among transcriptome studies are frequently reported, casting doubt on the reliability of collected data. The inconsistency among observations can be largely attributed to differences among the analytical frameworks employed for data analysis. The existing frameworks normalizes data against a standard determined from the data to be analyzed. In the present study, a parametric framework based on a strict model for normalization is applied to data acquired using an in-house printed chip and GeneChip. The framework is based on a common statistical characteristic of microarray data, and each data is normalized on the basis of a linear relationship with this model. In the proposed framework, the expressional changes observed and genes selected are coincident between platforms, achieving superior universality of data compared to other methods

    Tet2 Controls the Responses of β cells to Inflammation in Autoimmune Diabetes.

    Get PDF
    β cells may participate and contribute to their own demise during Type 1 diabetes (T1D). Here we report a role of their expression of Tet2 in regulating immune killing. Tet2 is induced in murine and human β cells with inflammation but its expression is reduced in surviving β cells. Tet2-KO mice that receive WT bone marrow transplants develop insulitis but not diabetes and islet infiltrates do not eliminate β cells even though immune cells from the mice can transfer diabetes to NOD/scid recipients. Tet2-KO recipients are protected from transfer of disease by diabetogenic immune cells.Tet2-KO β cells show reduced expression of IFNγ-induced inflammatory genes that are needed to activate diabetogenic T cells. Here we show that Tet2 regulates pathologic interactions between β cells and immune cells and controls damaging inflammatory pathways. Our data suggests that eliminating TET2 in β cells may reduce activating pathologic immune cells and killing of β cells

    Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19.

    Get PDF
    Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100

    Exploring the Origins of T Peripheral Helper Cells

    No full text
    Interactions between B cells and T helper cells (CD4+) are central to the function of our immune system. Yet, these interactions can turn pathologic and lead to the development of autoimmune diseases. A subset of CD4+ T cells, known as T peripheral helper cells (Tph), has been observed in the circulation and tissue of patients with autoimmune diseases. These cells, unlike the more well understood T follicular helper cells (Tfh), facilitate B cell help at the site of inflammation as opposed to lymphoid organs where Tfh cells are commonly found. The Tph profile shares expression of CXCL13, IL-21, and high levels of PD-1 with Tfh cells but does not express chemokine receptor CXCR5. Therefore, these Tph cells are often defined as PD-1hi CXCR5- CD4+ T cells. Here, we exposed naive and memory CD4+ T cell populations to pro-inflammatory cytokines to induce this Tph cell profile. The combination of cytokines, IFN-β and TGF-β, proved most promising in induction of the Tph population

    NEBULA is a fast negative binomial mixed model for differential or co-expression analysis of large-scale multi-subject single-cell data

    No full text
    AbstractThe increasing availability of single-cell data revolutionizes the understanding of biological mechanisms at cellular resolution. For differential expression analysis in multi-subject single-cell data, negative binomial mixed models account for both subject-level and cell-level overdispersions, but are computationally demanding. Here, we propose an efficient NEgative Binomial mixed model Using a Large-sample Approximation (NEBULA). The speed gain is achieved by analytically solving high-dimensional integrals instead of using the Laplace approximation. We demonstrate that NEBULA is orders of magnitude faster than existing tools and controls false-positive errors in marker gene identification and co-expression analysis. Using NEBULA in Alzheimer’s disease cohort data sets, we found that the cell-level expression of APOE correlated with that of other genetic risk factors (including CLU, CST3, TREM2, C1q, and ITM2B) in a cell-type-specific pattern and an isoform-dependent manner in microglia. NEBULA opens up a new avenue for the broad application of mixed models to large-scale multi-subject single-cell data.</jats:p

    A Food-Derived Flavonoid Luteolin Protects against Angiotensin II-Induced Cardiac Remodeling

    No full text
    <div><p>Oxidative stress has been implicated in cardiac remodeling (cardiac fibrosis and hypertrophy), which impairs cardiac function and metabolism; therefore, it is anticipated antioxidative compounds will have protective properties against cardiac remodeling. Luteolin (3’,4’,5,7-tetrahydroxyflavone), a widely distributed flavonoid found in many herbal extracts including celery, green pepper, perilla leaves and seeds, and chamomile, is a known to be a potent antioxidant and was previously demonstrated to exert an antifibrotic effect in the lungs and the liver. In this study, we clearly demonstrate that oral pretreatment with the higher-luteolin diet (0.035% (wt/wt)) protected against cardiac fibrosis and hypertrophy as well as a hyperoxidative state in Ang II-infused rats. In cardiac tissue, increased gene expression levels of TGFβ1, CTGF, Nox2, Nox4, ANP, and BNP induced by Ang II were restored by oral pretreatment of this high-luteolin diet. In cultured rat cardiac fibroblasts, H<sub>2</sub>O<sub>2</sub>-induced TGFβ1 expression and the phosphorylation of JNK were suppressed by luteolin pretreatment. In conclusion, food-derived luteolin has protective actions against Ang II-induced cardiac remodeling, which could be mediated through attenuation of oxidative stress.</p></div

    Cardiac dopamine D1 receptor triggers ventricular arrhythmia in chronic heart failure

    No full text
    The pathophysiological role of dopamine D1 receptor (D1R) in chronic heart failure remains elusive. Here the authors show that D1R-expressing cardiomyocytes appear in chronic heart failure and play a pivotal role in triggering lethal ventricular arrhythmias
    corecore