273 research outputs found

    Lactic acid bacteria in wine: technological advances and evaluation of their functional role

    Get PDF
    Currently, the main role of Lactic Acid Bacteria (LAB) in wine is to conduct the malolactic fermentation (MLF). This process can increase wine aroma and mouthfeel, improve microbial stability and reduce the acidity of wine. A growing number of studies support the appreciation that LAB can also significantly, positively and negatively, contribute to the sensorial profile of wine through many different enzymatic pathways. This is achieved either through the synthesis of compounds such as diacetyl and esters or by liberating bound aroma compounds such as glycoside-bound primary aromas and volatile thiols which are odorless in their bound form. LAB can also liberate hydroxycinnamic acids from their tartaric esters and have the potential to break down anthocyanin glucosides, thus impacting wine color. LAB can also produce enzymes with the potential to help in the winemaking process and contribute to stabilizing the final product. For example, LAB exhibit peptidolytic and proteolytic activity that could break down the proteins causing wine haze, potentially reducing the need for bentonite addition. Other potential contributions include pectinolytic activity, which could aid juice clarification and the ability to break down acetaldehyde, even when bound to SO2, reducing the need for SO2 additions during winemaking. Considering all these findings, this review summarizes the novel enzymatic activities of LAB that positively or negatively affect the quality of wine. Inoculation strategies, LAB improvement strategies, their potential to be used as targeted additions, and technological advances involving their use in wine are highlighted along with suggestions for future research.Carla Virdis, Krista Sumby, Eveline Bartowsky and Vladimir Jirane

    Rise and Persistence of Global M1T1 Clone of Streptococcus pyogenes

    Get PDF
    M1T1 strain, its diversification by phage acquisition, and the in vivo selection of more fit members of its community present an intriguing example of the emergence of hypervirulent forms of a human pathogen

    Protein surface functionalisation as a general strategy for facilitating biomimetic mineralisation of ZIF-8

    Get PDF
    The durability of enzymes in harsh conditions can be enhanced by encapsulation within metal-organic frameworks (MOFs) via a process called biomimetic mineralisation. Herein we show that the surface charge and chemistry of a protein determines its ability to seed MOF growth. We demonstrate that chemical modification of amino acids on the protein surface is an effective method for systematically controlling biomimetic mineralisation by zeolitic imidazolate framework-8 (ZIF-8). Reaction of surface lysine residues with succinic (or acetic) anhydride facilitates biomimetic mineralisation by increasing the surface negative charge, whereas reaction of surface carboxylate moieties with ethylenediamine affords a more positively charged protein and hinders the process. Moreover, computational studies confirm that the surface electrostatic potential of a protein is a good indicator of its ability to induce biomimetic mineralisation. This study highlights the important role played by protein surface chemistry in encapsulation and outlines a general method for facilitating the biomimetic mineralisation of proteins

    Site-specific metal and ligand substitutions in a microporous Mn(2+)-based metal-organic framework

    Get PDF
    First published online 16 Feb 2016The precise tuning of the structural and chem. features of microporous metal-org. frameworks (MOFs) is a crucial endeavour for developing materials with properties that are suitable for specific applications. In recent times, techniques for prepg. frameworks consisting of mixed-metal or ligand compns. have emerged. However, controlled spatial organization of the components within these structures at the mol. scale is a difficult challenge, particularly when species possessing similar geometries or chem. properties are used. Here, we describe the synthesis of mixed-metal and ligand variants possessing the Mn3L3 (Mn-MOF-1; H2L = bis(4-(4'-carboxyphenyl)-3,5-dimethylpyrazolyl)methane) structure type. In the case of mixed-ligand synthesis using a mixt. of L and its trifluoromethyl-functionalised deriv. (H2L' = bis(4-(4'-carboxyphenyl)-3,5-di(trifluoromethyl)pyrazolyl)methane), a mixed-ligand product in which the L' species predominanantly occupies the pillar sites lining the pores is obtained. Meanwhile, post-synthetic metal exchange of the parent Mn3L3 compd. using Fe2+ or Fe3+ ions results in cation exchange at the carboxylate clusters and metalation at the pillar bispyrazolate sites. The results demonstrate the versatility of the Mn3L3 structure type toward both metal and ligand substitutions, and the potential utility of site-specific functionalisations in achieving even greater precision in the tuning of MOFs. [on SciFinder(R)]Michael Huxley, Campbell J. Coghlan, Alexandre Burgun, Andrew Tarzia, Kenji Sumida, Christopher J. Sumby, and Christian J. Doona

    Particle size effects in the kinetic trapping of a structurally-locked form of a flexible metal-organic framework

    Get PDF
    First published online 08 Feb 2016The application of metal-org. frameworks (MOFs) for gas storage, mol. sepns. and catalysis neccesitates careful consideration of the particle size and structuralisation (e.g. pelletisation, surface-anchoring) of a material. Recently, particle size has been shown to dramatically alter the phys. and structural properties of certain MOFs but overall there is limited information on how the particle size affects the properties of flexible MOFs. Here we demonstrate that the particle size of a flexible MOF, specifically the as-synthesized form of [Cu(bcppm)H2O]•S (H2bcppm = bis(4-(4-carboxyphenyl)-1H-pyrazolyl)methane, S = solvent) (1), correlates with the rate of structural reorganisation from a "kinetically-trapped" activated 3D form of this MOF to the "open" 2D form of the structure. We also outline two methods for synthetically reducing the particle size of 1 at room temp., using 0.1 M NaOH (for two reaction times: 0.5 and 16 h) and with the sodium salt of the ligand Na2bcppm, producing crystals of 85 ± 15, 280 ± 14 and 402 ± 41 nm, resp. [on SciFinder(R)]Oliver M. Linder-Patton, Witold M. Bloch, Campbell J. Coghlan, Kenji Sumida, Susumu Kitagawa, Shuhei Furukawa, Christian J. Doonan and Christopher J. Sumb

    A Combination of Independent Transcriptional Regulators Shapes Bacterial Virulence Gene Expression during Infection

    Get PDF
    Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS) suggested that the transcriptional regulator catabolite control protein A (CcpA) influences many of the same genes as the control of virulence (CovRS) two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both ΔccpA and ΔcovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, ΔccpA and ΔcovRΔccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the ΔccpA and ΔcovRΔccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection

    Unveiling the structural transitions during activation of a CO2 methanation catalyst Ru0/ZrO2 synthesised from a MOF precursor

    Get PDF
    Available online 5 May 2020Carbon Capture, Utilisation and Storage (CCUS) technologies are utilised to minimise net CO2 emissions and hence mitigate the impact of anthropogenic emissions on the global climate. One example of CO2 utilisation is the production of carbon-neutral methane fuel via catalytic CO2 reduction with H2 (methanation). Thermal activation of a metal impregnated metal-organic framework (MOF), 1 wt%Ru/UiO-66 in the presence of H2 and CO2 provides in situ synthesis of a highly active methanation catalyst: H2 promotes the formation of Ru0 nanoparticles, and CO2 behaves as a mild oxidant to remove framework carbon and promote ZrO2 crystallisation. The nature of the active MOF-derived Ru0/ZrO2 catalyst was studied by PXRD, TEM, and XAS, and the evolution of the parent 1 wt%Ru/UiO-66 during thermal activation monitored in operando by synchrotron PXRD. The Ru impregnated Zr-based MOF collapses on heating in H2 and CO2 to form an amorphous C and Zr containing phase that subsequently crystallises as tetragonal (t-) ZrO2 nanoparticles. These t-ZrO2 nanoparticles undergo a subsequent phase transition to the more stable monoclinic (m-) ZrO2 polymorph. In situ activation of Ru/UiO-66 generates a highly active catalyst for CO2 methanation by transforming the MOF precursor into a (carbonfree) crystalline t-ZrO2 support that stabilises highly dispersed metallic Ru nanoparticles. This insight may guide the rational design of future MOF-derived catalystsRenata Lippi, Anita M. D, Angelo, Chaoen Li, Shaun C. Howard, Ian C. Madsen, Karen Wilson, Adam F. Lee, Christopher J. Sumby, Christian J. Doonan, Jim Patel, Danielle F. Kenned

    Does functionalisation enhance CO2 uptake in interpenetrated MOFs? An examination of the IRMOF-9 series

    Get PDF
    The effect of pore functionalisation (-I, -OH, -OCH3) on a series of topologically equivalent, interpenetrated metal-organic frameworks (MOFs) was assessed by both simulation and experiment. Counter-intuitively, a decreased affinity for CO2 was observed in the functionalised materials, compared to the non-functionalised material. This result highlights the importance of considering the combined effects of network topology and chemical functionality in the design of MOFs for enhanced CO2 adsorptionRavichandar Babarao, Campbell J. Coghlan, Damien Rankine, Witold M. Bloch, Gemma K. Gransbury, Hiroshi Sato, Susumu Kitagawa, Christopher J. Sumby, Matthew R. Hill and Christian J. Doona

    Proteomic analysis at the sites of clinical infection with invasive Streptococcus pyogenes

    Get PDF
    Invasive Streptococcus pyogenes infections are rare, with often-unexplained severity. Prompt diagnosis is desirable, as deaths can occur rapidly following onset and there is an increased, but preventable, risk to contacts. Here, proteomic analyses of clinical samples from invasive human S. pyogenes infections were undertaken to determine if novel diagnostic targets could be detected, and to augment our understanding of disease pathogenesis. Fluid samples from 17 patients with confirmed invasive S. pyogenes infection (empyema, septic arthritis, necrotising fasciitis) were analysed by proteomics for streptococcal and human proteins; 16/17 samples had detectable S. pyogenes DNA. Nineteen unique S. pyogenes proteins were identified in just 6/17 samples, and 15 of these were found in a single pleural fluid sample including streptococcal inhibitor of complement, trigger factor, and phosphoglycerate kinase. In contrast, 469 human proteins were detected in patient fluids, 177 (38%) of which could be identified as neutrophil proteins, including alpha enolase and lactotransferrin which, together, were found in all 17 samples. Our data suggest that streptococcal proteins are difficult to detect in infected fluid samples. A vast array of human proteins associated with leukocyte activity are, however, present in samples that deserve further evaluation as potential biomarkers of infection
    corecore