43 research outputs found

    Tenogenically induced allogeneic mesenchymal stem cells for the treatment of proximal suspensory ligament desmitis in a horse

    Get PDF
    Suspensory ligament injuries are a common injury in sport horses, especially in competing dressage horses. Because of the poor healing of chronic recalcitrant tendon injuries, this represents a major problem in the rehabilitation of sport horses and often compromises the return to the initial performance level. Stem cells are considered as a novel treatment for different pathologies in horses and humans. Autologous mesenchymal stem cells (MSCs) are well known for their use in the treatment of tendinopathies; however, recent studies report a safe use of allogeneic MSCs for different orthopedic applications in horses. Moreover, it has been reported that pre-differentiation of MSCs prior to injection might result in improved clinical outcomes. For all these reasons, the present case report describes the use of allogeneic tenogenically induced peripheral blood-derived MSCs for the treatment of a proximal suspensory ligament injury. During conservative management for 4 months, the horse demonstrated no improvement of a right front lameness with a Grade 2/5 on the American Association of Equine Practitioners (AAEP) scale and a clear hypo-echoic area detectable in 30% of the cross sectional area. From 4 weeks after treatment, the lameness reduced to an AAEP Grade 1/5 and a clear filling of the lesion could be noticed on ultrasound. At 12 weeks (T-4) after the first injection, a second intra-lesional injection with allogeneic tenogenically induced MSCs and platelet rich plasma was given and at 4 weeks after the second injection (T-5), the horse trotted sound under all circumstances with a close to total fiber alignment. The horse went back to previous performance level at 32 weeks after the first regenerative therapy and is currently still doing so (i.e., 20 weeks later or 1 year after the first stem cell treatment). In conclusion, the present case report demonstrated a positive evolution of proximal suspensory ligament desmitis after treatment with allogeneic tenogenically induced MSCs

    Equine allogeneic chondrogenic induced mesenchymal stem cells are an effective treatment for degenerative joint disease in horses

    Get PDF
    Degenerative joint disease is one of the main causes of equine early retirement from pleasure riding or a performance career. The disease is initially triggered by an abnormal loading of normal cartilage or a normal loading of abnormal cartilage. This primary insult is accompanied with joint inflammation, which leads to further progressive degeneration of the articular cartilage and changes in the surrounding tissues. Therefore, in search for an effective treatment, 75 adult horses with early signs of degenerative fetlock joint disease were enrolled in a randomized, multicenter, double-blinded, and placebo-controlled study. Fifty animals were injected intra-articularly with the investigational veterinary product (IVP) consisting of allogeneic chondrogenic induced mesenchymal stem cells (ciMSCs) with equine allogeneic plasma, and 25 horses were injected with 0.9% NaCl (saline) control product. From week 3 to 18 after treatment, lameness scores (P<0.001), flexion test responses (P<0.034), and joint effusion scores (P<0.001) were remarkably superior in IVP-treated horses. Besides nasal discharge in both treatment groups, no adverse events were observed during the entire study period. On long-term follow-up (1 year), significantly more investigational product-treated horses were working at training level or were returned to their previous level of work (P<0.001)

    Large-scale copy number analysis reveals variations in genes not previously associated with malignant pleural mesothelioma

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive tumor that is often causally associated with asbestos exposure. Comparative genomic hybridization techniques and arrays demonstrated a complex set of copy number variations (CNVs) in the MPM-genome. These techniques however have a limited resolution, throughput and flexibility compared to next-generation sequencing platforms. In this study, the presence of CNVs in the MPM-genome was investigated using an MPM-cohort (N = 85) for which genomic microarray data are available through 'The Cancer Genome Atlas' (TCGA). To validate these results, the genomes of MPMs and matched normal samples (N = 21) were analyzed using low-pass whole genome sequencing on an 'Illumina HiSeq' platform. CNVs were detected using in-house developed analysis pipelines and frequencies of copy number loss and gain were calculated. In both datasets, losses on chromosomes 1, 3, 4, 6, 9, 13 and 22 and gains on chromosomes 1, 5, 7 and 17 were found in at least 25% and 15% of MPMs, respectively. Besides the well-known MPM-associated genes, CDKN2A, NF2 and BAP1, other interesting cancer-associated genes were listed as frequently involved in a copy number loss (e.g. EP300, SETD2 and PBRM1). Moreover, four cancer-associated genes showed a high frequency of copy number gain in

    Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32

    Get PDF
    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, Pmeta = 2.5 × 10−9, OR[T] = 0.81) and 17q21.32 (rs72823592, Pmeta = 9.3 × 10−9, OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, Pmeta = 9.1 × 10−9, OR[T] = 0.68) and at 1q43 for JME (rs12059546, Pmeta = 4.1 × 10−8, OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, Pmeta = 4.0 × 10−6) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndrome

    Allogenic mesenchymal stem cells as a treatment for equine degenerative joint disease : a pilot study

    No full text
    Cell-based therapies, such as treatments with mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) are thought to have beneficial effects on the clinical outcome of orthopedic injuries, but very few animal studies with large sample size are published so far. Therefore, the aim of this study was to assess the safety and report the clinical outcome of allogenic, immature or chondrogenic induced MSCs in combination with PRP for the treatment of degenerative joint disease (DJD) in 165 horses. MSCs and PRP were isolated from a 6-year-old donor horse and transplanted either in their native state or after chondrogenic induction in combination with PRP into degenerated stifle (n=30), fetlock (n=58), pastern (n=34) and coffin (n=43) joints. Safety was assessed by means of clinical evaluation and the outcome was defined as failure to return to work (score 0), rehabilitation (score 1), return to work (score 2) and return to previous level (score 3), shortly (6 weeks) after treatment or at 18 weeks for the patients that returned for long-term follow-up (n=91). No adverse effects were noticed, except for three patients who showed a moderate flare reaction within one week after treatment of the fetlock joint without long-term effects (1.8% of 165 horses). Already after 6 weeks, 45% (native MSCs) and 60% (chondrogenic induced MSCs) of the treated patients returned to work (-> score 2+3) and the beneficial effects of the treatment further increased after 18 weeks (78% for native MSCs and 86% for chondrogenic induced MSCs). With the odds ratio of 1.47 for short-term and 1.24 for long-term, higher average scores (but statistically not significant) could be noticed using chondrogenic induced MSCs as compared to native MSCs. For all three lower limb joints a higher percentage of the treated patients returned to work after chondrogenic induced MSC treatment, whereas the opposite trend could be noticed for stifle joints. Nevertheless, more protracted follow-up data should confirm the sustainability of these joints

    Intravenous application of allogenic peripheral blood-derived mesenchymal stem cells : a safety assessment in 291 equine recipients

    No full text
    It has been reported that mesenchymal stem cells (MSCs) have homing capacities and immunomodulating effects after an intravenous injection. However, transplanting MSCs in murine tail veins can result in pulmonary reactions and even death of the animals. Unfortunately, only a few intravenous MSC transplantations have been reported in large animal species and these were performed in a limited number of individuals. To assess the safety of MSC transplantations, a large study on 291 recipient horses is reported here. MSCs were isolated from the peripheral blood (PB) of a 4-year-old and 6-year-old donor horse after having tested their PB for a wide range of transmittable diseases. The MSC samples from both donor horses were characterized and resuspended in 1ml of Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% Dimethyl Sulfoxide (DMSO). After hand-thawing in the field, 291 horses with ages ranging from 3-months to 33-years were directly injected into their jugular vein. 281 horses (97%) received a single injection of a physiological dose of 0.2 x 10(6) MSCs, 5 horses (1.7%) were re-injected after approximately 6 weeks (using the same dose and donor cells) and a single superphysiological dose of 10(6) MSCs was administered to 5 horses as well. In total, 176 recipients were injected with MSCs from the 4-year-old donor and 115 recipients received MSCs from the 6-year-old donor. From all the injected horses (n=291) no acute clinical adverse effects were noticed. Apart from one horse that died of colic 7 months after the treatment, no deaths were registered and all the horses were monitored for 1 year after the injection. In conclusion, no adverse effects were noticed in 291 recipients after an intravenous injection of allogenic PB-derived MSCs. Nevertheless, further research is warranted in order to verify the immunogenic properties of these cells after allogenic transplantation into various (patho)physiological sites

    A CMOS Multi-Parameter Biochemical Microsensor with Temperature Control and Signal Interfacing

    No full text
    A complementary metal oxide semiconductor (CMOS) multi-parameter biochemical microsensor used for conductometric measurements and continuous monitoring of concentrations of blood gases, ions and biomolecules is described. Temperature control of the measured fluids and a one-time-use security check were provided for proper operation of the biochemical sensors. The ion sensitive field effect transistors (ISFET) were used to measure voltages between the conductometric electrodes such that two parallel processors shared one electrode. The results of the amperometric oxygen measurements and potassium concentration measurements proved the functionality of the system and the feasibility of the integration process.status: publishe
    corecore