6 research outputs found

    Localization of Alkaloid and Other Secondary Metabolites in Cinchona ledgeriana Moens: Anatomical and Histochemical Studies on Fresh Tissues and Cultured Cells

    Get PDF
    Cinchona ledgeriana produces several secondary metabolites. The main quinoline alkaloid, quinine that is widely used as an antimalarial drug, is most commonly extracted from the bark of Cinchona, and its leaves contain several other metabolites. Many studies have revealed that cell culture of Cinchona also produces quinine. Nevertheless, the sites of secondary metabolites accumulation are still elusive. This study is aimed at describing specific anatomical structures where alkaloids and some other secondary metabolites are accumulated as well as their localization in leaves and barks of C. ledgeriana, compared to those found in cultured cells. Fresh leaves and barks, and cells of C. ledgeriana were used for anatomical observation and histochemical tests. It was found that these plant parts have specialized structures, idioblast cells with elliptical- and spherical-shapes, scattered in leaf hypodermis, stem cortex, and secondary phloem. Unspecialized structures such as epidermis and palisade mesophyll tissues were also found accumulating some metabolites. Histochemical tests showed that bark and leaves contained alkaloids, terpenoids, phenolic, and lipophilic compounds. Cultured cells presented positive results for alkaloids and terpenoids

    IDENTIFICATION OF SECRETORY STRUCTURE, HISTOCHEMISTRY AND PHYTOCHEMICAL COMPOUNDS OF MEDICINAL PLANT Hyptis capitata Jacq.

    Get PDF
    Hyptis capitata Jacq. (common name: Knobweed or False Ironwort) belongs to Lamiaceae family and is among known traditional medicine. The Anak Dalam Tribe of Jambi Province uses the leaves of H. capitata to cure external and internal wounds. This study was aimed at identifying and analyzing secretory structure, histochemistry and phytochemical content of H. capitata leaves.  The results showed that H. capitata leaves have secretory structures in the form of peltate, capitate and uniseriate glandular trichomes on the upper and lower leaf surfaces, with idioblast cells scattered throughout the leaf mesophyll. Histochemical tests indicated that the peltate trichomes have four head cells, containing alkaloids and terpenoids. This study classified capitate trichomes into two types: 1. type I has one stalk cell and two head cells, all containing  alkaloids, terpenoids and lipophilic compounds; 2. type II has long stalk cells consisting of seven to ten cells with one head cell, all containing alkaloids and terpenoids. Uniseriate glandular trichomes of H. capitata leaves consist of four to eight cells containing alkaloids and terpenoids. The idioblast cells are round-shaped and contain lipophilic compounds. GC-MS analysis showed that H. capitata leaves  contain terpenoid compounds assumed to serve as anti-infective agents, including l-limonene, eugenol, farnesol isomers A, d-nerolidol, hexahydrofarnesol and neophytadiene

    Analisis Morfofisiologi, Anatomi, dan Histokimia pada Lima Spesies Tanaman Gulma sebagai Respons terhadap Merkuri dan Timbal

    Get PDF
    Plants can be used as phytoremediation agents to improve critical land due to gold mining activities. This experiment aimed to analyze the morphophysiological, anatomical, and histochemical responses of Brachiaria mutica, Cyperus kyllingia, Ipomea aquatica, Mikania micrantha, and Paspalum conjugatum in response to the application of heavy metals mercury and lead in the forms of Hg(NO3)2 and Pb(NO3)2 in hydroponic experiments and to determine the ability of these plants to accumulate both metals. Morphological responses were observed by measuring number of leaves and plant dry weight, and physiological responses were observed by analyzing photosynthetic pigments, while anatomical and histochemical responses were analyzed by microscopic observation to tranversal slice of roots and leaves. The results showed that the applications of Hg(NO3)2 and Pb(NO3)2 treatments caused decreases in number of leaves, plant dry weights, and photosynthetic pigments (chlorophyll a, chlorophyll b, and carotenoid). The treatments also decreased leaf thickness due to the decrease in the epidermis, but they caused the increases in exodermis and endodermis of the roots. Mercury and lead were accumulated in large amounts in the roots, but accumulation in the shoot was less. Histochemical observation showed that lead was found in the roots of all the plants, especially in endodermic tissue and the vessel, whereas in the leaves the two metals were detected in the upper and lower epidermis, mesophyll, and vessel. Among the five species tested, C. kyllingia and P. conjugatum were the most tolerant to Pb and Hg

    Pertumbuhan dan Produksi Rimpang Kencur (Kaempferia galanga L.) pada Ketinggian Tempat yang Berbeda

    Get PDF
    Galanga (Kaempferia galanga L.) is one of the potential medicinal plants with high demand. Therefore, galanga cultivation was still quite promising. To obtain the optimum growth and high rhizome production, the superior galanga accessions are required. The optimal growth and high production of galanga accessions will be obtained if cultivated at the area with appropriate altitude. The purpose of the study was to obtain galanga accession with a better growth and high yield at the area with a suitable altitude. This study used split-plot design; altitude as a main plot and accession as a subplot. The location as a main plot consisted of altitudes of 214 and 780 masl. This study used seven accessions i.e., accession of PBG (Purbalingga), CLP (Cilacap), PWJ (Purworejo), KRA (Karanganyar), PCT (Pacitan), MAD (Madiun), and GAL2 (Galesia 2) as control. The results showed that different altitudes significantly affected the total chlorophyll content, stomatal conductance, transpiration rate, photosynthesis rate, dry weight, and rhizome yield. The number of leaves was influenced by altitude and accession of galanga. The interaction between altitude and accession of galanga significantly affected the leaf area and the soluble sugar concentration in the galanga rhizome. The rhizome yield at low altitude was higher than in high altitude. PBG (Purbalingga) and PWJ (Purworejo) accessions have the potential to be developed in locations with an altitude of 214 masl. Keywords: altitude, Kaempferia galanga, rhizom

    Untargeted Metabolomics Analysis Using FTIR and UHPLC-Q-Orbitrap HRMS of Two Curculigo Species and Evaluation of Their Antioxidant and α-Glucosidase Inhibitory Activities

    No full text
    Curculigo orchioides and C. latifolia have been used as traditional medicines such as antidiabetic and anticancer. This study measured the total phenolics and flavonoid contents as well as analyzed the functional groups and chemical compounds using Fourier-transform infrared (FTIR) spectra and UHPLC-Q-Orbitrap-HRMS profiling for the discrimination of plant parts, geographical origin, and compounds that presumably have a significant contribution as antioxidant and α-glucosidase inhibitors on both plants. The total phenolics and flavonoids contents in Curculigo species varied from 142.09 to 452.47 mg gallic acid equivalent (GAE/g) and from 0.82 to 5.44 mg quercetin equivalent (QE/g), respectively. The lowest IC50 for antioxidant and α-glucosidase inhibitory activities is presented by C. latifolia from a higher altitude region. Principal component analysis (PCA) from FTIR and UHPLC-Q-Orbitrap-HRMS data could discriminate the plant parts and geographical origin. Partial least squares (PLS) analysis has identified several functional groups, such as O–H, C–H, C=O, C–C, C–O, and chemical compounds, unknown-185 and unknown-85, that are most likely to contribute to the antioxidant and α-glucosidase inhibitory activities

    Morpho-Physiology of Mulberry (Morus sp.) Plant on Salinity Stress Tolerance

    Get PDF
    The accession of mulberry (Morus sp.) with salinity tolerance unavailable in Indonesia is needed to overcome the problem of marginal land, especially in the saline areas of the country. Therefore, this research aims to determine the accession of salinity tolerance of mulberry from 6 origins in Indonesia based on growth and physiological parameters. The method used was a factorial randomized block design with the first treatment of stem cutting-derived mulberry accession being M1, M2, M3, M4, M5, M6, and M7, while the second was the concentration of NaCl at 0 mM, 40 mM, 60 mM, and 80 mM. The results showed that M2 accession from Bogor was categorized as tolerance to high salt stress, and M1 was classified as sensitive accession. Increasing salt concentration causes a decrease in growth parameters. It also decreased physiological parameters such as leaf and media relative water content while increasing dissolved sugars. Genotypic scores indicate salinity tolerance and the potential number of leaves, while Na+ content and leaf necrosis percentage showed sodium toxicity in the leaf. Therefore, genotypic score, Na+/K+ ratio, and leaf necrosis percentage are the best parameters to select and identify mulberry accession with high salt stress tolerance
    corecore