1,191 research outputs found
On-the-fly ab initio semiclassical dynamics: Identifying degrees of freedom essential for emission spectra of oligothiophenes
Vibrationally resolved spectra provide a stringent test of the accuracy of
theoretical calculations. We combine the thawed Gaussian approximation (TGA)
with an on-the-fly ab initio (OTF-AI) scheme to calculate the vibrationally
resolved emission spectra of oligothiophenes with up to five rings. The
efficiency of the OTF-AI-TGA permits treating all vibrational degrees of
freedom on an equal footing even in pentathiophene with 105 vibrational degrees
of freedom, thus obviating the need for the global harmonic approximation,
popular for large systems. Besides reproducing almost perfectly the
experimental emission spectra, in order to provide a deeper insight into the
associated physical and chemical processes, we also develop a novel systematic
approach to assess the importance and coupling between individual vibrational
degrees of freedom during the dynamics. This allows us to explain how the
vibrational line shapes of the oligothiophenes change with increasing number of
rings. Furthermore, we observe the dynamical interplay between the quinoid and
aromatic characters of individual rings in the oligothiophene chain during the
dynamics and confirm that the quinoid character prevails in the center of the
chain
Improving the accuracy and efficiency of time-resolved electronic spectra calculations: Cellular dephasing representation with a prefactor
Time-resolved electronic spectra can be obtained as the Fourier transform of
a special type of time correlation function known as fidelity amplitude, which,
in turn, can be evaluated approximately and efficiently with the dephasing
representation. Here we improve both the accuracy of this approximation---with
an amplitude correction derived from the phase-space propagator---and its
efficiency---with an improved cellular scheme employing inverse Weierstrass
transform and optimal scaling of the cell size. We demonstrate the advantages
of the new methodology by computing dispersed time-resolved stimulated emission
spectra in the harmonic potential, pyrazine, and the NCO molecule. In contrast,
we show that in strongly chaotic systems such as the quartic oscillator the
original dephasing representation is more appropriate than either the cellular
or prefactor-corrected methods.Comment: submitte
Options for Control of Reactive Power by Distributed Photovoltaic Generators
High penetration levels of distributed photovoltaic(PV) generation on an
electrical distribution circuit present several challenges and opportunities
for distribution utilities. Rapidly varying irradiance conditions may cause
voltage sags and swells that cannot be compensated by slowly responding utility
equipment resulting in a degradation of power quality. Although not permitted
under current standards for interconnection of distributed generation,
fast-reacting, VAR-capable PV inverters may provide the necessary reactive
power injection or consumption to maintain voltage regulation under difficult
transient conditions. As side benefit, the control of reactive power injection
at each PV inverter provides an opportunity and a new tool for distribution
utilities to optimize the performance of distribution circuits, e.g. by
minimizing thermal losses. We discuss and compare via simulation various design
options for control systems to manage the reactive power generated by these
inverters. An important design decision that weighs on the speed and quality of
communication required is whether the control should be centralized or
distributed (i.e. local). In general, we find that local control schemes are
capable for maintaining voltage within acceptable bounds. We consider the
benefits of choosing different local variables on which to control and how the
control system can be continuously tuned between robust voltage control,
suitable for daytime operation when circuit conditions can change rapidly, and
loss minimization better suited for nighttime operation.Comment: 8 pages, 8 figure
Distributed control of reactive power flow in a radial distribution circuit with high photovoltaic penetration
We show how distributed control of reactive power can serve to regulate
voltage and minimize resistive losses in a distribution circuit that includes a
significant level of photovoltaic (PV) generation. To demonstrate the
technique, we consider a radial distribution circuit with a single branch
consisting of sequentially-arranged residential-scale loads that consume both
real and reactive power. In parallel, some loads also have PV generation
capability. We postulate that the inverters associated with each PV system are
also capable of limited reactive power generation or consumption, and we seek
to find the optimal dispatch of each inverter's reactive power to both maintain
the voltage within an acceptable range and minimize the resistive losses over
the entire circuit. We assume the complex impedance of the distribution circuit
links and the instantaneous load and PV generation at each load are known. We
compare the results of the optimal dispatch with a suboptimal local scheme that
does not require any communication. On our model distribution circuit, we
illustrate the feasibility of high levels of PV penetration and a significant
(20% or higher) reduction in losses.Comment: 6 pages, 5 figures
Über Respiration, Tracheensystem und Schaumproduktion der Schaumcikadenlarven (Aphrophorinae-Homoptera)
Local Control of Reactive Power by Distributed Photovoltaic Generators
High penetration levels of distributed photovoltaic (PV) generation on an
electrical distribution circuit may severely degrade power quality due to
voltage sags and swells caused by rapidly varying PV generation during cloud
transients coupled with the slow response of existing utility compensation and
regulation equipment. Although not permitted under current standards for
interconnection of distributed generation, fast-reacting, VAR-capable PV
inverters may provide the necessary reactive power injection or consumption to
maintain voltage regulation under difficult transient conditions. As side
benefit, the control of reactive power injection at each PV inverter provides
an opportunity and a new tool for distribution utilities to optimize the
performance of distribution circuits, e.g. by minimizing thermal losses. We
suggest a local control scheme that dispatches reactive power from each PV
inverter based on local instantaneous measurements of the real and reactive
components of the consumed power and the real power generated by the PVs. Using
one adjustable parameter per circuit, we balance the requirements on power
quality and desire to minimize thermal losses. Numerical analysis of two
exemplary systems, with comparable total PV generation albeit a different
spatial distribution, show how to adjust the optimization parameter depending
on the goal. Overall, this local scheme shows excellent performance; it's
capable of guaranteeing acceptable power quality and achieving significant
saving in thermal losses in various situations even when the renewable
generation in excess of the circuit own load, i.e. feeding power back to the
higher-level system.Comment: 6 pages, 5 figures, submitted to IEEE SmartGridComm 201
- …
