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Vibrationally resolved spectra provide a stringent test of the accuracy of theoretical calculations. We
combine the thawed Gaussian approximation (TGA) with an on-the-fly ab initio (OTF-AI) scheme
to calculate the vibrationally resolved emission spectra of oligothiophenes with up to five rings.
The efficiency of the OTF-AI-TGA permits treating all vibrational degrees of freedom on an equal
footing even in pentathiophene with 105 vibrational degrees of freedom, thus obviating the need
for the global harmonic approximation, popular for large systems. Besides reproducing almost per-
fectly the experimental emission spectra, in order to provide a deeper insight into the associated
physical and chemical processes, we also develop a novel systematic approach to assess the impor-
tance and coupling between individual vibrational degrees of freedom during the dynamics. This
allows us to explain how the vibrational line shapes of the oligothiophenes change with increas-
ing number of rings. Furthermore, we observe the dynamical interplay between the quinoid and
aromatic characters of individual rings in the oligothiophene chain during the dynamics and con-
firm that the quinoid character prevails in the center of the chain. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4884718]

I. INTRODUCTION

Polythiophenes (Tn) and their functional derivatives
belong among the most studied compounds among π -
conjugated polymers due to their potential in organic
electronics,1 since they combine remarkable conductivity
with excellent thermo- and chemo-stability. Detailed experi-
mental investigations of polythiophenes have shown that their
optical properties are closely related to the structure of the
polymer backbone: For instance, the 0–0 transition energies
are approximately a linear function of 1/n, where n is the num-
ber of thiophene rings in the polymer.2–4 Bandgap computa-
tions confirmed validity of this semi-empirical rule for short
polymers as well as its violation for longer chains.5, 6

For a direct comparison with experiments it is, however,
crucial to calculate the vibrationally resolved spectra.7, 8 Here,
we therefore determine the vibrationally resolved emission
spectra of oligothiophenes Tn with two to five rings, i.e., n
∈ {2, 3, 4, 5}, since the vibrational line shape is changing
drastically in this range of n.2

The cost of computing a vibrationally resolved spectrum
is much higher than the cost of vertical transition energy cal-
culations since the spectrum calculation requires the knowl-
edge of the involved potential energy surfaces (PESs). As it
is often difficult to describe PESs accurately in terms of an-
alytical functions, a popular approach, especially for larger
molecules is to approximate the PESs by harmonic potentials
with respect to certain reference structures.9, 10 The absorption
and emission line shapes of dithiophene have been calculated
by Stendardo et al.11 using a double-well potential describing
the torsional mode and global harmonic approximation in the

a)Electronic mail: jiri.vanicek@epfl.ch

remaining degrees of freedom (DOF). In order to get a good
correspondence with experiment, the authors show that an ap-
propriate choice of these reference structures is essential, e.g.,
the ground PES reference structure for the emission spectrum
calculation is found using symmetry constraints.

Alternative strategy employs trajectory-based methods in
combination with an on-the-fly (OTF) ab initio (AI) scheme,
in which the required potential energies, forces, and Hessians
are computed with an electronic structure package during
the dynamics. It is becoming increasingly clear that ab ini-
tio semiclassical dynamics provides a powerful spectroscopic
tool useful, e.g., for evaluating internal conversion rates12 or
vibrationally resolved spectra.13–15 Not only do the evolving
trajectories provide an intuitive classical-like picture of the
underlying physical and chemical processes, but via interfer-
ence, they also partially account for the most important nu-
clear quantum effects. The overall computational cost, how-
ever, restricts almost all of these methods to small systems.

As a result, one is forced to strike a balance between
physical accuracy and computational efficiency. In this spirit,
OTF-AI Gaussian wave packet (GWP) propagation can pro-
vide a useful compromise. Within the thawed Gaussian ap-
proximation (TGA), the nuclear wave packet is guided by a
central classical trajectory, which feels the anharmonicity of
the potential, while its width is propagated using the local har-
monic approximation.16 Hence, the effects of anharmonic or
double-well potentials are partially captured by TGA; more-
over, the OTF-AI framework obviates the need of an a priori
knowledge of the landscape of the final PES. More impor-
tantly, due to its moderate computational cost, TGA can treat
all vibrational degrees of freedom on an equal footing even
in large systems, while in smaller systems, it permits using a

0021-9606/2014/140(24)/244114/13/$30.00 © 2014 AIP Publishing LLC140, 244114-1
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more accurate electronic structure description. A well-known
shortcoming of the TGA is that it captures accurately only the
short-time dynamics and, therefore, only describes the broad
spectral features.17 Nevertheless, due to interaction with sol-
vent and other phenomena contributing to spectral broaden-
ing, the experimental spectra are also typically not fully vi-
brationally resolved.

Although rewarding, a mere reproduction of an experi-
mental spectrum, no matter how accurate, does not provide
a deeper insight into the associated physical and chemical
processes; it is a careful analysis of the simulation that can
provide such information. The extraction of this essential in-
formation, which is often omitted, can be as difficult as the
simulation itself, especially for larger molecules. For exam-
ple, explanation of changes in the vibrational line shape of the
spectra due to increasing polymer chain length, which is done
here for oligothiophenes, increases drastically the complexity
of the analysis. Therefore, in addition to providing an efficient
computational protocol for computing vibrationally resolved
electronic spectra we also present a systematic approach
for extracting the essential information about the underlying
dynamics.

II. THEORY

A. Emission spectrum calculation

In the time-dependent approach pioneered by Heller,17

the molecular spectrum is determined by the Fourier trans-
form of an appropriate correlation function. Within the elec-
tric dipole approximation, time-dependent perturbation the-
ory, and rotating wave approximation, the correlation function
required for computing the emission spectrum is

Cem(t) ∝ Tr [ρ̂1(T )μ̂10Û0(−t)μ̂01Û1(t)]. (1)

Here, ρ̂1(T ) is the nuclear density operator in the first
excited electronic state (S1) at temperature T, Ûj (t)
= exp(−iĤj t/¯) for j ∈ {0, 1} denotes the nuclear quantum
evolution operator on the jth electronic surface Sj, and μ̂ij is
the transition dipole moment operator coupling states Si and
Sj. Within the Franck-Condon approximation and in the low
temperature limit, the correlation function (1) becomes

Cem(t) ∝ 〈�init|Û0(−t)Û1(t)|�init〉
= 〈�init|Û0(−t)|�init〉e−iE1t/¯, (2)

where E1 is the energy of the ground vibrational state of
S1. Equation (2) states17 that propagation of the ground vi-
brational state of S1 on S0 determines the correlation func-
tion Cem(t), and hence the spectrum, which is obtained via a
Fourier transform

σ (ω) = Aωk

∫
Cem(t)eiωtdt, (3)

where k = 0 for the line shape and k = 3 for the emission
spectrum. Prefactor A is a constant factor depending on the
type of spectra.8, 9, 18 Since it is constant, in our calculations A
was chosen so that the spectra are normalized in the L∞ norm,
i.e., the highest spectral peak is of unit intensity.

B. Thawed Gaussian approximation

The celebrated thawed Gaussian approximation16, 19 of
Heller belongs among the earliest practical semiclassical ap-
proaches to quantum dynamics. The main idea is exceedingly
simple—since a GWP evolving in a globally harmonic poten-
tial retains its functional form, one expects that propagating a
single thawed GWP using a local harmonic approximation for
the potential can provide a reasonable approximation in many
applications, especially when the dynamics of interest is ul-
trafast. Although the accuracy of the single GWP description
is clearly limited, it can provide the most important informa-
tion beyond that contained in static calculations employing
globally harmonic approximation for the potential.20, 21

Within TGA, the evolving GWP is assumed in the form

ψt (q) = N0 exp
{

− (q − qt )T · At · (q − qt )

+ i

¯
[(pt )T · (q − qt ) + γ t ]

}
, (4)

where N0 is a normalization constant, xt = (qt, pt) denotes the
GWP’s phase-space center, At is a real, symmetric width ma-
trix, and γ t represents an overall phase factor. Note that γ t is a
time-dependent complex number the imaginary part of which
guarantees normalization of ψ t(q) for t ≥ 0. The key ingredi-
ent of the method consists in expressing the potential V (q) in
the local harmonic approximation (LHA). This in turn yields
a time-dependent effective potential

V t
eff(q) = V (qt ) + ∇V (qt )T · (q − qt )

+ 1

2
(q − qt )T · ∇2V (qt ) · (q − qt ), (5)

where the potential V , gradient ∇V , and Hessian ∇2V are
evaluated at the current coordinate center qt of the evolving
GWP at time t. As already alluded to above, the second-order
Taylor expansion (5) ensures that the ansatz (4) is plausible
even for t > 0. Denoting by

Ht
eff := pT · (G/2) · p + V t

eff (6)

the effective Hamiltonian and inserting the ansatz (4) into the
time-dependent Schrödinger equation

i¯
∂

∂t
ψt (q) = Ht

effψ
t (q),

gives equations of motion for xt, At, and γ t:

ẋt = {x, H t
eff}, (7a)

Ȧt = −2i¯At · G · At + i

2¯
∇2V (qt ), (7b)

γ̇ t = Lt
eff − ¯2 Tr[G · At ], (7c)

where G is the inverse of the mass matrix and Lt
eff denotes

Lagrangian dual to Ht
eff. Numerical integration of the classi-

cal equations of motion (7a) is easily carried out in a sym-
plectic fashion (see Sec. III). In order to integrate Eq. (7b),
we follow the strategy19 proposed by Lee and Heller. Within
their method, the matrix At is factorized using two auxiliary
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matrices Pt and Zt as

At = i

2¯
P t · (Zt )−1. (8)

Since this decomposition is clearly not unique, a further con-
straint is imposed, namely,

Żt = G · P t . (9)

In matrix notation, the unique solution of Eqs. (8) and (9) can
be written as (

P t

Zt

)
= Mt ·

(
P 0

Z0

)
, (10)

with initial conditions Z0 = I and P0 = 2i¯A0. The time-
dependent matrix Mt := ∂xt/∂x0 is the stability matrix cor-
responding to the evolving phase-space point xt. Finally, by
inserting Eqs. (8) and (10) into Eq. (7c), and by employing
the matrix identity det exp B = exp Tr B, one obtains directly
an explicit solution for γ t in the form

γ t =
t∫

0

Lτ
eff dτ + i¯

2
ln(det Zt ). (11)

Note that since the matrix Zt is complex, one has to ensure that
a proper branch of the logarithm be taken in order to make γ t

continuous in time.

C. On-the-fly ab initio TGA

In an OTF-AI (or “direct”) dynamics, the required poten-
tial energy surface is generated consecutively at each propaga-
tion step by any of the standard electronic structure packages
(see Sec. III). In addition to classical trajectory propagation
based only on force evaluation, TGA requires to repeatedly
evaluate the Hessian ∇2V along the evolving trajectory, since
∇2V is needed22 for propagating the stability matrix Mt.

The evolving GWP is properly defined only in the sub-
space of the vibrational degrees of freedom of the molecule
of interest. Therefore, a germane choice of the coordinate sys-
tem is essential. We illustrate the procedure employed in the
numerical calculations on a specific scenario of two, ground
and excited PESs, where the initial GWP corresponding to the
ground vibrational state of the excited electronic PES is sub-
sequently propagated on the ground electronic surface. Let us
consider a reference equilibrium geometry ξ ref on the excited
PES, where ξ ref is a vector with 3N Cartesian components,
with N denoting the number of atoms in the molecule. Any
displaced molecular configuration ξ , obtained, e.g., by propa-
gation on a different PES, can be related to the normal-mode
coordinates η as

ξ − ξref = G
1
2 · O · η = T · η, (12)

with T := G
1
2 · O and O denoting the orthogonal matrix

that diagonalizes the mass-scaled Cartesian Hessian ma-
trix evaluated at ξ ref, i.e., T T · ∇2V |ξ ref · T = 
2, where

 = diag(ω1, . . . , ω3N) is the diagonal matrix containing the
normal-mode frequencies. Note that η in Eq. (12) has 3N com-
ponents, i.e., incorporates also the 3 translational and 3 rota-
tional degrees of freedom. The initial values of these displace-

ments are zero and one would like to preserve this constraint
also during the dynamics on the ground PES. The transla-
tional modes are projected out easily by shifting the center
of mass to the origin of the Cartesian frame. Next, in order to
minimize the coupling to the remaining 3 rotational modes,
we closely follow the axis-switching procedure devised by
Hougen and Watson.23, 24 In this spirit, any displaced configu-
ration ξ is rotated relatively to ξ ref in order to satisfy Eckart’s
conditions

N∑
a=1

ma (Pa · ξref) × [Pa · (� · ξ )] = 0. (13)

In Eq. (13), the sum runs over all N atoms, � is a 3N × 3N
block-diagonal matrix, where each of the N blocks is a copy of
a three-dimensional rotation matrix R, and the 3 × 3N matrix
Pa is defined as (Pa)i, j = δi, 1δj, 3a − 2 + δi, 2δj, 3a − 1 + δi, 3δj, 3a.
Application of Pa to a configuration ξ essentially selects co-
ordinates of the ath atom. Having minimized the coupling to
the rotational modes, one can afford to consider in Eq. (12)
only the first (3N − 6) columns of the matrix O. In that case,
the transformation matrix T also reduces to a 3N × (3N − 6)
form. Kudin and Dymarsky showed25 that the rotation matrix
R solving Eq. (13) can be obtained by minimizing the mass-
weighted root-mean-square distance of ξ with respect to the
reference configuration ξ ref. In practice, this is achieved effi-
ciently, e.g., by employing direct methods based on singular
value decomposition or quaternion formalism.26

The transformation from the Cartesian to the vibrational
normal-mode coordinates is thus performed in three consec-
utive steps. First, the configuration ξ is shifted to the center-
of-mass system. Second, it is rotated to the Eckart frame, and
finally it is projected onto the vibrational normal modes, i.e.,

η = W · [� · (ξ − �) − ξref], (14)

where W := T T · G−1 and the center-of-mass vector � is de-
fined as

� :=
(

N∑
a=1

Pa

)T

·
N∑

a=1

ma Pa · ξ

/ N∑
a=1

ma. (15)

Finally, one also needs to express the Cartesian force ∇ξV

and the Cartesian Hessian matrix ∇2
ξ V in the η-coordinates:

∇ηV = (W · �) · ∇ξV , (16a)

∇2
ηV = (W · �) · ∇2

ξ V · (W · �)T. (16b)

D. Stability matrix propagation: Symplecticity
and effect of Hessian interpolation

The GWP’s center and the accompanying stability ma-
trix Mt are propagated classically using the second-order sym-
plectic algorithm.22 Propagation of Mt is the most expensive
part of the entire OTF-AI calculation since it requires knowl-
edge of the Hessian of the PES along the evolving trajectory.

The associated computational costs can be alleviated by
employing a Hessian update scheme, within which the Hes-
sian is evaluated directly only once every s ≥ 1 steps and
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FIG. 1. Partitioning of S1 normal-mode coordinates of dithiophene T2 into approximately independent subsets for the threshold value εB = 0.045 [see
Eq. (22)]. Colored circles represent individual modes, i.e., elements of D. The dynamically important modes [Eq. (25)] comprising Gε� with the threshold
value ε� = 0.6 are shown in red. Finally, solid lines represent inter-mode couplings above the threshold εB . Vibrational frequencies are given in cm−1.

approximated at the remaining steps with an extrapolation
method requiring gradients. Note that these Hessian update
schemes are in the context of dynamics typically used for
the propagation of the classical trajectory itself, e.g., within
the framework of higher-order predictor-corrector schemes
(see Refs. 27 and 28 and references therein). In contrast, in
Refs. 12, 29, and 30 as well as in the present work, approx-
imative treatment of the Hessian is used only for the propa-
gation of Mt. However, whereas in Refs. 12, 29, and 30 the
Hessian update is based on extrapolation, in this work poly-
nomial interpolation of order b is used to obtain the Hessian
at intermediate steps. A Hessian extrapolation update scheme
would be convenient in cases for which analytical ab ini-
tio Hessians are not available, e.g., for absorption spectrum
calculation.

Note that our approach requires propagating the full clas-
sical trajectory and storing the necessary information regard-
ing the potential first, and interpolating the Hessian later.
The TGA GWP is computed in the second pass through the
stored data. The advantage of this approach is twofold: First,
the independent Hessian calculations in the second pass are
easily parallelized. Second, one can perform a global anal-
ysis of the trajectory over the entire propagation range (see
Subsection II E).

As the first test, we check the conservation of the sym-
plectic condition

Mt T · J · Mt = J (17)

by the 2D × 2D stability matrix Mt, where J is the standard
symplectic matrix

J :=
(

0D ID

−ID 0D

)

and ID is the D-dimensional identity matrix. The deviation
from Eq. (17) is evaluated in terms of the error

εt := ‖Mt T · J · Mt − J‖F, (18)

where ‖A‖F :=
√

Tr(AT · A) =
√∑2D

i=1

∑2D
j=1 |Aij |2 denotes

the Frobenius norm31 of matrix A and the exact stability ma-
trix satisfies

εt = 0. (19)

For instance, in the T2 calculation, Eq. (19) is well satis-
fied even for Hessian interpolated from AI values computed
only every 2, 4, 8, or 16 steps. For details, see Fig. 1(a)
in the supplementary material.32 It is important to note that
any violations of Eq. (19) are due to round-off errors, since
in an infinite-precision arithmetics, Eq. (19) would be sat-
isfied even if the true Hessian were replaced by an arbi-
trary symmetric matrix Ht . The only additional requirement
is that Mt be propagated symplectically,22 since the symme-
try of Ht is guaranteed by the interpolation algorithm. Inci-
dentally, note that Eq. (19) is much more stringent than the
widely used Liouville condition, which only requires con-
servation of the phase-space volume, expressed by the re-
quirement det(Mt T · Mt ) = 1, and automatically follows from
symplecticity [Eq. (19)].

The influence of the interpolation procedure with s > 1, b
≥ 0 on the GWP evolved with the TGA is quantified in terms
of fidelity—a quantity introduced by Peres33 to measure sen-
sitivity of quantum dynamics to perturbations. In our setting,
the fidelity is defined as the squared magnitude of the time-
dependent overlap of GWPs propagated using the TGA with
and without interpolation:

Fs,b(t) := ∣∣〈ψt
1,b|ψt

s,b

〉∣∣2. (20)

In the T2 case, e.g., interpolating every four steps using the
second order interpolation (b = 2) has almost no effect on
the propagated GWP, while the OTF-AI calculation is accel-
erated almost four times [see Fig. 1(b) in the supplementary
material32].

E. Identification of the essential DOFs

Perhaps the greatest advantage of trajectory-based meth-
ods is the possibility to visualize the dynamics and directly
study its influence on the resulting spectra. However, direct
analysis can become quite cumbersome for systems of high
dimensionality. Moreover, the dynamical couplings among
individual DOFs pose additional complications since all the
coupled DOFs must be analyzed simultaneously. In this sub-
section, we introduce a particular approach for extracting the
essential characteristics of the dynamics of a generic system
with D vibrational DOFs. To some extent, this method shares
common grounds with other “effective modes” techniques
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aspiring to identify the modes responsible for the main spec-
tral features, e.g., methods tailored for the description of
nonadiabatic transitions.34 However, in contrast to Ref. 34,
the identification of the essential DOFs is here per-
formed on the fly. The “tool” proposed here is used in
Subsection IV B for analyzing and interpreting the emission
spectra of the oligothiophene Tn family.

In order to simplify the discussion below, we introduce
the symbol D to denote the space spanned by all D DOFs. Any
subspace of D is then identified with the subset of indexes
of those DOFs that span the given subspace. In this spirit, D
itself is identified with the set D = {1, 2, . . . , D}. Note that
the set of normal mode coordinates provide a natural physical
realization of D, nevertheless our approach is not limited to
this particular choice.

Briefly put, our strategy is as follows. First, we decom-
pose the set D of all vibrational DOFs into mutually disjoint
subsets, where the DOFs in different subsets can be thought of
as approximately dynamically independent. Second, we iden-
tify the dynamically most important DOFs and then consider
only those subsets of D which contain at least one of these
“important” DOFs.

To quantify the coupling between various DOFs, we
utilize the stability matrix to measure the information flow
among individual DOFs. The “flow” Bij between ith and jth
DOF is then defined as

Bij :=
∣∣∣∣βij

βii

∣∣∣∣, with β := 1

T

T∫
0

dt κT · M̃t · κ, (21)

where M̃t
ij = |Mt

ij | and κT = (ID, ID) denotes a two-
component vector, each component of which is a D-
dimensional identity matrix. The value of β ij is rescaled in
Eq. (21) by 1/β ii in order to make the diagonal elements unital
(Bii = 1), as in uncoupled systems, and to focus solely on the
coupling effects among different DOFs (i 
= j). For connec-
tion to and comparison with the analysis based on the global
harmonic model or Duschinsky matrix, we refer to Sec. G of
the supplementary material.32

The decomposition of D into (approximately) dynami-
cally decoupled subsets of DOFs is then constructed by means
of the concept of εB-partitioning

D =
c̄(D, εB )⋃

α=1

DεB

α , (22)

where c̄(D, εB) denotes the number of mutually disjoint sub-
sets DεB

α defined as the maximal connected components of an
undirected graph with adjacency matrix35

Eij :=
{ 1 if max{Bij , Bji} ≥ εB,

0 otherwise,
(23)

with a particular threshold value εB.
Any nontrivial decomposition (22), where each subset

DεB
α is interpreted as uncoupled, yields a partially separable

dynamics. Depending on the value c̄(D, εB), this separation
can significantly reduce computational costs, since the total
correlation function can be obtained as a product of individ-

ual contributions evaluated independently on each subspace
(i.e., subset DεB

α ).
Next, we identify the set Gε� ⊆ D of the dynamically

most important DOFs. For this purpose, we employ the rel-
ative displacement vector �, the ith component of which is
defined as the maximal relative displacement in the coordi-
nate ς i, describing the ith DOF, where the maximum is un-
derstood to be taken over the total propagation range [0, T],
i.e.,

�i := max
0≤t≤T

∣∣ςt
i

∣∣(A0
ii/ ln 2)1/2 for 1 ≤ i ≤ D. (24)

Here, the scaling factor containing the diagonal element A0
ii

of the width matrix of the initial GWP ensures that the spread
of the nuclear wave function be taken into account: A small
displacement of a high-frequency (stiff) mode modulates the
correlation function much more than the same displacement
of a low-frequency (soft) mode. The set Gε� of dynamically
most important modes is then defined by

i ∈ Gε� ⇔ �i ≥ ε�, (25)

where ε� is a prescribed threshold value. A particular DOF
is thus interpreted as “dynamically important” if the dynam-
ics displaces it sufficiently relative to the width of the initial
vibrational state.

Finally, we combine the two ideas, i.e., the decoupling
based on the εB-partitioning [Eq. (22)], and the selection
of important modes based on the relative displacement �

[Eq. (24)], to form an “active space” AεB , ε� comprised of
all subsets DεB

α containing at least one dynamically important
DOF from Gε� :

AεB , ε� =
⋃
α∈S

DεB

α , with S := {β : Gε� ∩ DεB

β 
= ∅}. (26)

Note that the number c(D, εB, ε�) := |S| of contributing
subsets DεB

α is in general smaller than c̄(D, εB) of Eq. (22).
In order to obtain a contiguous labeling of the subsets in de-
composition (26), we introduce a bijective (but otherwise ar-
bitrary) mapping l between sets S and {1, . . . , c(D, εB, ε�)}.
This allows to restate Eq. (26) as

AεB , ε� =
c(D, εB , ε�)⋃

α=1

AεB , ε�

α , where AεB , ε�

α := DεB

l(α). (27)

The subsets AεB , ε�

α are in the following referred to as groups.
(Mathematically, these “groups” are just “sets” and should not
be confused with a precise mathematical notion of group.)

In summary, individual DOFs are by definition consid-
ered to be coupled only within groups the union of which
forms the space AεB , ε� . Each group then contains at least one
DOF classified as dynamically important on the basis of the
rule (25). The total number of groups c(D, εB, ε�) and their
structure is mainly determined by the values of the two thresh-
olds ε� and εB which have to be chosen appropriately accord-
ing to the system and process of interest.

Let us now demonstrate the approach outlined above on
a particular example–the dithiophene molecule (T2). Since an
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oligothiophene Tn is comprised of

N (n) = 7n + 2 (28)

atoms, the space D is of dimensionality D(n) := 3N(n) − 6
= 21n, i.e., in the case of T2 (n = 2), there are 42 vibrational
DOFs. To be explicit, these vibrational DOFs are identified
with normal-mode coordinates of PES S1. Individual modes
are in Fig. 1 represented by colored circles with juxtaposed
vibrational frequencies. Now, for εB = 0.045, one obtains 4
subsets in the decomposition (22), i.e., c̄(D, εB) = 4. Further,
we identify the set of important modes G using rule (25). With
threshold value ε� = 0.6, we isolate 8 modes, i.e., |Gε� | = 8.
These modes are shown in red color in Fig. 1. Finally, we see
that for this choice of the thresholds, we obtain only one group
in the decomposition (27) since Gε� ∩ DεB

β 
= ∅ only for β =
1. Thus, c(D, εB, ε�) = 1 and the bijective mapping l reduces
to an identity.

In practical calculations, ε� and εB must be chosen care-
fully. For high threshold values εB, one can profit from an ap-
proximate separability of the model. However, too high values
of either εB or ε� might yield inaccurate results.

III. COMPUTATIONAL DETAILS

All ab initio calculations were performed with the
Gaussian09 package.36 Its output was extracted directly
from the checkpoint file. The ground PES S0 was handled
with the density functional theory (DFT), whereas the first ex-
cited singlet PES (S1) was described with the time-dependent
DFT (TD-DFT). Following the work of Stendardo et al.,11

our TD-DFT calculations were based on the long-range cor-
rected CAM-B3LYP functional with 6-31+G(d,p) basis set.
Within this TD-DFT setup, the energy gap between the S0 and
S1 PESs of oligothiophenes is described quite accurately. Al-
though Gaussian09 provides analytical gradients for both
DFT and TD-DFT, analytical Hessians are available only for
DFT. No symmetry constraints were enforced and the “fine”
and “ultra fine” integration grids were used for OTF-AI cal-
culations and geometry optimization, respectively.

In order to find the physically relevant equilibrium geom-
etry of S1 for each oligothiophene Tn, we first performed an S0

geometry optimization of the “all-trans” conformer, the rings
of which are oriented in an anti conformation with respect to
their neighbors. The work by Becker and co-workers2 sug-
gests that this is the most stable conformer. The S1 geometry
optimization was started from this S0 equilibrium geometry.
It has been well-established that in contrast to the inter-ring
twisted S0 equilibrium geometry and its shallow potential, S1

exhibits a steep, deep, harmonic-like well in the vicinity of
its planar equilibrium geometry.2, 37 The S1 equilibrium ge-
ometry, shown in the supplementary material,32 served as the
reference structure for the OTF-AI-TGA dynamics.

Within the OTF-AI-TGA, the GWP was propagated for
the total time of 7976 a.u. ≈ 193 fs with a time step of 8 a.u.
≈ 0.2 fs using the second order symplectic algorithm. The
resulting spectra were subjected to a phenomenological (in-
homogeneous) Gaussian broadening with half-width at half-
maximum (HWHM) of 0.025 eV ≈ 200 cm−1.

IV. RESULTS AND DISCUSSION

A. Comparison with experimental spectra

Our results confirm the utility of the OTF-AI-TGA ap-
proach for electronic spectra calculation, since all important
features of the experimental spectra are almost perfectly re-
produced. Figure 2 demonstrates the agreement with the over-
all shape, peak intensities, as well as the trend of the spectra to
gradually shift toward lower frequencies with increasing num-
ber of rings in the molecule. Note that particular experimen-
tal conditions, notably the interaction with the solvent (here,
ethanol glass at 77 K), can produce a shift of the spectrum.
However, we disregard this effect since the resulting shift is
expected to be small for a broad class of solvents.2, 37, 38 Also,
the exact prediction of the spectrum position is partly beyond
the level of the ab initio setup employed here (see Sec. III).

Becker et al.39 reported a significant red shift of the olig-
othiophene absorption spectra at low temperatures and at-
tributed this phenomenon to the twisted�→planar conforma-
tional transition induced by solvent freezing. Interestingly,
this shift was not observed in the emission spectra, which
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FIG. 2. (a)-(d) Emission spectra of the oligothiophene Tn family for n ∈ {2,
3, 4, 5}: Comparison of experimental emission spectra (exp., dashed green
line) with the full-dimensional OTF-AI-TGA calculations using all 21n nor-
mal modes (solid black line).
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FIG. 3. Emission in the oligothiophene Tn family for n ∈ {2, 3, 4, 5}. (a) L∞-
normalized line-shape spectra. To facilitate their comparison, the spectra are
shifted independently for each n so that the α0 peak appears at zero energy.
(b) Dependence of the vertical-transition energy Evert and positions of the α0
and α1-peaks (Eα0 , Eα1 ) on 1/n (see text for details). Linear fits are denoted
with lines.

suggests that in the whole temperature range it is only the
planar conformation that plays a significant role in this pro-
cess. Even without imposing explicit planarity constraints, no
deviations from the planar conformation were observed dur-
ing the ground-state gas-phase OTF-AI dynamics due to pla-
narity of the initial geometry. This fact makes the comparison
of our gas-phase results to the experimental data more legiti-
mate. Finally, note that the ab initio ground state equilibrium
geometry is twisted in contrast to the equilibrium geometry
in ethanol glass at 77 K. Therefore, the n − 1 torsional de-
grees of freedom connecting the planar and twisted geome-
tries of Tn have imaginary frequencies. Since our approach
is unable to describe wave-packet splitting, the TGA GWP
only spreads along these degrees of freedom (see the supple-
mentary material,32 Sec. E). However, since we are mainly
interested in short-time dynamics, this behavior is qualita-
tively correct. Hence, the OTF-AI-TGA approach remains in
this case robust even for floppy molecules and the question
about the “harmonicity” of the system is of much lesser im-
portance due to the employment of the local harmonic ap-
proximation. Although the global harmonic approximation is
quite adequate for Tn,11 small changes of the peak positions
and intensities can be observed as compared to OTF-AI-TGA
(see the supplementary material,32 Sec. F).

To facilitate comparison between line-shape spectra of
oligothiophenes with different numbers of thiophene rings,
the spectra shown in Fig. 3(a) are first L∞ normalized and
subsequently shifted so that the “α0-peaks” overlap at zero

energy. This reveals that the relative peak positions are rather
insensitive to n, while their prominence is increasing with in-
creasing n. The peak at the highest energy (in our notation: α0)
in the emission spectrum is attributed to the 0–0 transition.40

The position of the α1-peak is close to the vertical transition
energy Evert , which, in loose terms, justifies its dominance in
Fig. 3(a). More detailed classification of individual spectral
peaks into the α, β groups and their interpretation from the
dynamical viewpoint is discussed in Subsection IV B.

It has been found experimentally that the 0–0 transi-
tion energy E0–0 in the polythiophene family Tn is a lin-
ear function of 1/n.2–5 In accordance with this observation
and our identification of E0–0 with Eα0 , we found that Eα0

is accurately described by the function Eα0 (n) ≈ (3.58/n

+ 1.91) eV. Good agreement with the experiment can be di-
rectly inferred from Fig. 2. Furthermore, from the ab ini-
tio data, we determined in a similar fashion that Evert(n)
≈ (3.33/n + 1.77) eV. Fits of Eα0 , Eα1 and Evert are shown
in Fig. 3(b).

Note that the relative intensity of the α0-peak, identified
with the 0–0 transition, in Fig. 3(a) increases with n. This can
be related to the fact that the slope of Eα1 (n) is larger than the
slope of Evert(n) [see Fig. 3(b)], using the following heuristic
argument: Neglecting the difference between the S0 and S1

zero-point energies, the 0–0 transition energy depends solely
on the energy gap between these PESs. On the other hand,
Evert is influenced also by the relative displacement of the S0

and S1 potential minima. Therefore, if Evert decreases more
slowly with increasing n than does the 0–0 transition energy,
one can expect a decrease not only in the energy gap between
S0 and S1 PESs but also in the relative displacement of their
minima, which, in turn, is responsible for the gain in intensity
of the 0–0 transition, i.e., the α0-peak. This observation is in
agreement with the Huang-Rhys analysis performed by Yang
et al.4 on fluorescence spectra of Tn for n ∈ {3, 4, 5, 6}.

B. Vibrational analysis

To gain a deeper understanding of the emission spectra
shown in Figs. 2 and 3, we employ independently for each
oligothiophene Tn the analysis proposed in Subsection II E
adapted to the normal-mode coordinates of the S1 PES of Tn.
To this end, we closely follow the example presented at the
end of Subsection II E. The normal-mode classification based
on decompositions (27) and (29) with εB = 0.55 and ερ = 0.6
results for all Tn in an active space A comprised of six groups
of modes (see Table I). This space is spanned by ten “active”
modes (i.e., |A| = 10) for T2-T4, while |A| = 8 for T5. The
thresholds were chosen in order to obtain a minimal set A of
active modes with as many subsets as possible on condition
that the reduced OTF-AI-TGA spectrum σA recovers all im-
portant features of the “complete” spectrum σD. For clarity,
the subscript of σ denotes explicitly the set of modes taken
into account in the spectra calculation. Formally, the spectrum
σA can be thought of as the computationally cheapest, yet still
sufficiently accurate approximation of σD.

For details regarding correlation function and spectra
calculations within proper subspaces of D we refer to the
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TABLE I. Normal-mode classification based on decompositions (27) and (29) with εB = 0.55 and ερ = 0.6 for the oligothiophene Tn family, n ∈ {2, 3, 4, 5}.
Vibrational frequencies ωi are given in cm−1, while the maximum relative displacements ρi of Eq. (24) are dimensionless. The modes are further classified
into 7 groups by the character of the deformation which they exert on the oligothiophene skeleton. These groups are distinguished by superscript labels next to
frequency values. For schematic depiction of these deformations, see Fig. 5.

ωi [cm−1] ρi

Class Group T2 T3 T4 T5 T2 T3 T4 T5

C1 A1 1657.7(a) 1630.5(a) 1615.5(a) 1598.6(a) 2.57(a) 2.50(a) 2.41(a) 1.93(a)

1507.2(a) 1553.9(a) 1545.2(a) 1590.1(a) 1.23(a) 1.10(a) 1.12(a) 1.35(a)

1450.0(a) 1501.2(a) 1581.3(a) 1548.5(a) 0.88(a) 0.86(a) 0.56(a) 1.13(a)

1211.2(a) 1461.9(a) 1498.2(a) 0.59(a) 0.36(a) 0.55(a)

3243.6(a) 1341.6(a) 1462.6(a) 0.25(a) 0.34(a) 0.36(a)

C2 A2 673.7(b) 696.7(b) 704.7(b) 710.8(b) 2.05(b) 1.56(b) 1.32(b) 1.17(b)

C3 A3 290.4(e) 210.1(e) 162.3(e) 122.5(c) 1.27(e) 1.92(e) 2.15(e) 0.99(c)

A4 386.5(c) 350.3(c) 333.0(c) 136.7(c) 1.61(c) 1.49(c) 1.39(c) 2.09(c)

A5 712.7(g) 739.6(g) 1112.9(f ) 322.6(c) 1.09(g) 0.64(g) 0.63(f ) 1.35(c)

A6 1096.3(f ) 1261.6(d) 1275.0(d) 1109.5(f ) 0.78(f ) 0.70(d) 0.66(d) 0.78(f )

Appendix A. From now on, to simplify notation, the implicit
dependence of, e.g., A on the threshold values εB and ε� will
not be denoted explicitly.

Figure 4(a) demonstrates that ten modes were sufficient
to essentially reproduce the complete spectrum σD for T2. The
simplification achieved is the most striking for T5 [Fig. 4(b)],
for which eight modes were sufficient and hence the dimen-
sionality was reduced more than ten times without losing any
major feature in the spectrum. However, note that the “|A|-
mode” spectra in Fig. 4 are slightly shifted due to dependence
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FIG. 4. Emission spectra of oligothiophenes T2 (a) and T5 (b): comparison
of the full-dimensional OTF-AI-TGA spectrum σD (solid black line) with the
spectrum σA (dotted green line) computed within the subspace A of the active
modes and the spectrum σC1∪ C2 (dashed blue line) taking into account only
modes belonging to the classes C1 and C2 (see Fig. 6 and Table I) introduced
in Eq. (29).

of the zero-point energy on the choice of A. (Analogous spec-
tra of T3 and T4 are shown in Sec. B of the supplementary
material.32)

The modes in A are by definition considered to be cou-
pled only within individual groups. Therefore, one can at-
tempt to assign a characteristic vibrational movement of the
entire molecule induced by excitation of the modes belong-
ing to a particular group. Among the 24 groups (24 = 4 olig-
othiophenes × 6 groups per oligothiophene), we identified 7
characteristic motions shown on the examples of T3 and T4
molecules in Fig. 5. In Table I, these characteristic motions
are distinguished with a superscript.

Next, the six groups of normal modes are, for each n ∈
{2, 3, 4, 5}, merged into three disjoint classes C1, C2, and
C3 as

C1 := A1, C2 := A2, and C3 :=
6⋃

α=3

Aα. (29)

The reason for introducing an additional logical layer is the
observation in Fig. 6 that the overall character of the spec-
trum σCi

corresponding to the ith class is only mildly influ-
enced by n, whereas the dependence on i is dominant. In loose
terms, the first class C1 comprises inter-ring stretch modes and
is mainly reflected in the “α-peaks” of the complete spectrum
σD [see Fig. 3(a)]. The second class C2 consists of a ring-
squeeze mode and produces the “β -peaks” in Fig. 3(a). Fi-
nally, the modes contained in the third class cause merely an
overall broadening of the spectrum. Such a classification of
vibrational modes, essential for a theoretical interpretation of
the emission spectra, is also useful in practice, e.g., in the de-
sign of organic light-emitting diodes (OLEDs).41

The difference between individual classes is further em-
phasized by introducing an “overall relative displacement” of
the ith class as R2

i := ∑
j∈Ci

�2
j . We have found that R1 is

highly correlated with −n while R2 with 1/n. Therefore, for
low n, the dynamical importance of the class C2 decreases
faster with increasing n. This results in less structured spectra,
shown in Fig. 3(b), in which the β-peaks are almost invisible
already for T3.
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244114-9 Wehrle, Šulc, and Vaníček J. Chem. Phys. 140, 244114 (2014)

FIG. 5. Characterization of the active normal modes in the set A ⊆ D [see Eqs. (27) and (29)] by the nature of the deformation which they exert on
the oligothiophene Tn skeleton. To cover all cases presented in Table I, these deformations are shown on the examples of T3 and T4. Panel labels cor-
respond to the classification in Table I: (a) inter-ring stretch, (b) ring squeeze, (c) chain deformation, (d) inner-ring C–S–C stretch, (e) ring expansion,
(f) C–H deformation, (g) C–S–C outer-ring asymmetric stretch.

In summary, the inter-ring stretch motion is seen to have
a dominant effect on the Tn spectra, especially for n > 2.
Comparing the relative displacements of the classes C1 and
C2 helps to further corroborate the hypothesis (stated above)
that the S0 and S1 geometries become less displaced with in-
creasing n since the 0–0 transition energy E0–0(n) decreases
faster than the vertical excitation energy Evert(n).

C. Quinoid structure of S1

The extent of π -conjugation along the oligomer chain
is reflected in the quinoid structure of individual rings. The
degree of the quinoid/aromatic character of the ith ring in
Tn can be quantified in terms of the so-called bond length

alternation42–44 (BLA)

BLAi = Rβi
− (Rαi

+ Rα′
i
)/2, (30)

where R denotes the length of the β, α, and α′ bonds of the ith
ring (see Fig. 7). Hence, quinoid rings have a negative BLA,
while aromatic rings have a positive BLA.

The S1 equilibrium geometries of Tn in Fig. 7 reveal that
for n > 2, both quinoid and aromatic ring types are present in
the chain: The inner rings are quinoid, while the end rings are
aromatic. On the other hand, both rings of T2 have quinoid
character. However, the large difference between the lengths
of α and α′ bonds suggests a double-bond character of the
outer α bond in T2. In general, the DFT S1 geometries exhibit
more pronounced quinoid character in comparison with the S1

geometries calculated at the MNDO level,42 which describe
T2 as slightly aromatic.
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FIG. 6. Classification of normal modes of the oligothiophene Tn family according to their influence on the resulting emission spectrum [see Eqs. (27) and (29)].
Detailed description of individual classes is contained in Table I. (a) Inter-ring stretch modes responsible for the α-peaks shown in Fig. 3. (b) Ring-squeeze
mode reflected in the β-peaks in Fig. 3. (c) Remaining modes causing overall broadening of the spectra.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.178.55.117 On: Mon, 23 Nov 2015 15:11:50
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The time dependence of BLA, displayed for T5 in
Fig. 8 and for T2, T3, and T4 in Sec. C of the supplementary
material,32 shows emission-induced oscillations between the
quinoid and aromatic characters of individual rings. The inner
rings are seen to be subjected to larger structural variations,
while the outer rings remain aromatic, although the degree of
aromaticity changes periodically. Hence, the quinoid charac-
ter of Tn in S1 is well localized over just 2-3 rings, as was
shown also by Beljonne et al.,42 while the emission process
triggers deformation of the whole chain.

Oligomer vibrational line shapes are usually analyzed in
terms of the effective conjugation coordinate45–47 (ECC)—
a totally symmetric internal coordinate describing the varia-
tion of adjacent C–C backbone stretches, responsible for the
change from the aromatic to quinoid structure. A detailed
analysis (summarized in Appendix B) of the dynamics shows
that only some of the modes coupled to ECC are also ex-
cited by the fluorescence process. The overall contribution of
the A1 group to the ECC is more than 92% for all oligoth-
iophenes and, hence, the α-peaks originate from the change
of the ECC during the dynamics induced by the fluorescence
process.
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FIG. 8. Time dependence of the bond length alternation (BLA) parame-
ter during the dynamics induced by the emission in pentathiophene T5 [see
Eq. (30) and Fig. 7]. The character of the outer rings (rings 1 and 2) is mainly
aromatic (positive BLA), while the transition to the quinoid structure (nega-
tive BLA) occurs almost exclusively within the inner ring (ring 3).

V. CONCLUSION

All features of the experimental emission spectra of olig-
othiophenes with up to five rings (i.e., up to 105 vibrational
DOFs) are well reproduced by our OTF-AI-TGA calculations.
The efficiency of the TGA formulation is found to allow treat-
ing all vibrational DOFs on an equal footing even in case of
larger systems especially since the OTF-AI scheme does not
require an a priori knowledge of the potential energy surfaces
and the TGA approach remains robust for floppy molecules.
No symmetry considerations are necessary; in particular, nei-
ther the dynamics nor the analysis relies on any symmetry as-
sumptions. Moreover, further considerable gain in efficiency
without losing any substantial information can be obtained by
employing Hessian interpolation.

Experimentalists try, often successfully, to translate the
spectral features into a dynamical picture, which for theoreti-
cians is often the starting point. The extraction of the essen-
tial information from the dynamical simulation, however, is
often as difficult as the simulation itself. We presented, there-
fore, a novel systematic approach to identify groups of vibra-
tions that are essential for the dynamics and for the spectrum.
This approach even allowed us to compare different oligothio-
phenes Tn and to study changes in their spectra with increas-
ing n: Their vibrational line shapes are modulated by inter-
ring stretch and ring-squeeze vibrations, the latter contribut-
ing to the spectral broadening for longer chains. The ground
and excited potential energy surfaces become more similar as
the chain length increases; this, in turn, reduces the amplitude
of the dynamics induced by emission and results in a shift
of the intensity toward the 0–0 transition. The phenomenon
is also reflected in the different dependences of the 0–0 and
vertical transition energies on 1/n.

The OTF-AI-TGA scheme also allowed us, by evaluat-
ing the bond length alternation, to study directly dynamical
oscillations between the quinoid and aromatic characters of
individual rings in the oligothiophene chain.

OTF-AI-TGA is also useful as a preliminary test. The ex-
pensive OTF-AI information stored during the TGA simula-
tion can be reused in other semiclassical methods such as poor
person’s Herman-Kluk (HK) propagator, where the HK pref-
actor is for all contributing trajectories assumed to be equal
to the prefactor of the central trajectory.48 In systems, which
are too large to be treated with a more sophisticated quantum
or semiclassical method, but for which the TGA is insuffi-
cient, e.g., due to the importance of interference effects, the
analysis of the OTF-AI-TGA results can be used to define a
subspace of reduced dimensionality, in which the most impor-
tant dynamics occurs. Within this subspace, the effects that
cannot be described with the TGA may be studied with less
efficient yet better-suited methods.20 Alternative approaches
for constructing the information-flow matrix in order to max-
imize the decoupling of the DOFs with minimal impact
on the resulting spectrum are the subject of our ongoing
research.

Finally, let us note that the computational protocol pre-
sented here is not limited to linear spectroscopy; nonlinear
spectra such as time-resolved stimulated emission can also be
evaluated with the OTF-AI-TGA.
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APPENDIX A: TGA IN SUBSPACES OF REDUCED
DIMENSIONALITY

One of the main goals of the normal mode analysis elab-
orated in Subsection II E is identifying the normal modes es-
sential for the dynamics. Restriction to these most important
modes allows one to devise a simplified model of reduced di-
mensionality, e.g., in the spirit of the well-studied pyrazine vi-
bronic coupling model.49 Moreover, this reduction also broad-
ens the class of computationally available methods. After the
reduction, one may be able to employ, e.g., the Gaussian ba-
sis methods,50 or various approaches from the family of the
semiclassical initial value representation.51

Let us consider a system with D vibrational DOFs.
In a typical OTF-AI-TGA calculation, one evolves the
D-dimensional GWP by classically propagating its center xt

and by evaluating the phase factor γ t and the complex time-
dependent width matrix At by means of Lee and Heller’s P-
Z algorithm19 summarized in Subsection II B [Eqs. (8) and
(11)].

As in Subsection II E, we identify the D-dimensional
space of vibrational DOFs with the set D = {1, . . . , D}. We
would like to take advantage of the stored D-dimensional tra-
jectory information, and, at the same time, to restrict our-
selves to a subset P ⊆ D of only d < D most important vi-
brational degrees of freedom and define a linear projection
π : RD → Rd from the full space of D vibrational DOFs to
the subspace of physical interest. Formally,

πij := δPi ,j for 1 ≤ i ≤ d and 1 ≤ j ≤ D, (A1)

where Pi denotes the ith element of the ordered set P .
The “reduced” d-dimensional GWP is again propagated

using the P-Z formalism. However, if (qt, pt) denotes the
trajectory followed by the original, D-dimensional GWP, then
the center of the reduced Gaussian follows a classical tra-
jectory (π · qt, π · pt) in the reduced, 2d-dimensional phase
space. Also, the initial conditions for the time-dependent
Pt, Zt matrices must be replaced with

Z̄0 = π · πT = Id, (A2a)

P̄ 0 = 2i¯π · A0 · πT. (A2b)

Here, d-dimensional matrices are denoted with a bar and A0

is the initial width matrix of the D-dimensional GWP.
Finally, we need to isolate the P-contribution to the

effective Lagrangian Leff, which is required in Eq. (11) for
evaluating the time-dependent complex phase γ t. This is con-
veniently done using conservation of energy, along the guid-
ing trajectory of the GWP. Therefore,

1

2
ζ t T · ζ t + V (ηt ) = V (η0), (A3)

with ζ denoting momentum conjugated to η; mass factors do
not explicitly appear since η is already mass-scaled. Using
Eq. (A3), the Leff-contribution to γ t in Eq. (11) then reads∫ t

0
Lτ

eff dτ =
∫ t

0

[
1

2
(ζ τ )T · ζ τ − V (ητ )

]
dτ

=
∫ t

0
[(ζ τ )T · ζ τ − V (η0)]dτ

=
∫ t

0
(ζ τ )T · ζ τ dτ − V (η0) t. (A4)

The part of this expression pertinent to the dynamics within
the subset of vibrational DOFs P is then easily obtained by
replacing ζ t with π · ζ t, i.e.,∫ t

0
Lτ

eff dτ

∣∣∣∣
P

=
∫ t

0
(π · ζ τ )T · (π · ζ τ ) dτ − V (η0) t. (A5)

The term V (η0) t generates an overall phase depending lin-
early on t and is responsible only for shift of the resulting
spectrum without altering its shape.

APPENDIX B: ANALYSIS OF THE EFFECTIVE
CONJUGATION COORDINATE

Oligomer spectra are usually analyzed in terms of the
so-called effective conjugation coordinate45–47 i.e., the to-
tally symmetric internal coordinate the excitation of which
triggers the conformational change between the aromatic to
the quinoid structures of the molecule. This approach is
especially popular within Raman spectroscopy.43, 52–55 For
the oligothiophene family Tn, ECC captures the alternation
between adjacent bonds and is defined as

� := 1√
N̄

N̄∑
a=1

(−1)a−1ra, (B1)

where ra is the Cartesian vector connecting the ath and (a
+ 1)th carbon atoms of the backbone comprised of N̄ = 4n

− 1 C-C bonds in total. Further insight is gained by restating
Eq. (B1) in the normal-mode coordinates. By employing
transformation (12), we obtain

� = �ref + R · η, with R := S · T and �ref := S · ξref,

(B2)
where T is the transformation matrix of Eq. (12), ξref denotes
Cartesian coordinates of a reference geometry, and

S := 1√
N̄

N̄∑
a=1

(−1)a(Pa − Pa+1) (B3)

is a generalization of the projector Pb defined below Eq. (13).
Then, the normalized “coupling strength” ν j of the jth

normal mode to � reads

νj := Tr YT
j · RT · R · Yj

Tr RT · R
, (B4)

where the square matrix Yj is defined as (Yj)kl := δjkδjl.
However, the quantity � changes during the dynamics

and its variations are described in terms of

δ�t := �t − �0 = R · η̄t , with η̄t := (ηt − η0). (B5)
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FIG. 9. (a)-(d) Comparison of the static, νj [see Eq. (B4)], and dynamic, υ j [see Eq. (B6)], contribution of individual normal modes to the ECC � of Eq. (B1)
for the oligothiophenes Tn, n ∈ {2, 3, 4, 5}.

Now, in order to assess the importance of a particular normal
mode with respect to δ�t , we cannot use Eq. (B4) directly,
since ν j provides only a static picture. To remedy this, we
introduce a more appropriate measure of dynamical coupling

υj := ςj∑
k ςk

, with ςj :=
∫ t

0
dt (η̄t )T · YT

j · RT · R · Yj · η̄t ,

(B6)
where the summation runs over all normal modes.

A comparison of individual normal modes for Tn, n ∈
{2, 3, 4, 5}, in terms of ν j and υ j is shown in Fig. 9, which
demonstrates clearly that only certain modes contributing to
� are excited during the fluorescence process. This means that
an analysis based merely on ν j would be incomplete.

In Subsection II E, individual normal modes were clas-
sified into independent groups Ai [see Eq. (27)]. Using
Eq. (B6), we can estimate the dynamical influence of a partic-
ular group Ai on δ�t by employing

κi :=
∑
j∈Ai

υj . (B7)

Table II demonstrates that variations in � can be assigned
mostly to the group A1, and, hence, the α-peaks (see Fig. 3)
originate from the change of the ECC during the dynamics
induced by the fluorescence process.

TABLE II. Contribution of the ith group Ai to ECC in terms of κ i intro-
duced in Eq. (B7).

A1 A2 A3 A4 A5 A6

T2 0.947 0.013 0.006 0.006 0.008 0.015
T3 0.962 0.010 0.009 0.001 0.000 0.003
T4 0.942 0.009 0.010 0.002 0.004 0.013
T5 0.927 0.008 0.000 0.012 0.001 0.025
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