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Time-resolved electronic spectra can be obtained as the Fourier transform of a special type of
time correlation function known as fidelity amplitude, which, in turn, can be evaluated approxi-
mately and efficiently with the dephasing representation. Here we improve both the accuracy of
this approximation—with an amplitude correction derived from the phase-space propagator—and its
efficiency—with an improved cellular scheme employing inverse Weierstrass transform and optimal
scaling of the cell size. We demonstrate the advantages of the new methodology by computing dis-
persed time-resolved stimulated emission spectra in the harmonic potential, pyrazine, and the NCO
molecule. In contrast, we show that in strongly chaotic systems such as the quartic oscillator the
original dephasing representation is more appropriate than either the cellular or prefactor-corrected
methods. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817005]

I. INTRODUCTION

Ultrafast spectroscopy with a time resolution as high as
10−15 s is essential for understanding many quantum dynami-
cal processes in chemical physics.1 Although short time scales
should simplify theoretical studies by requiring shorter sim-
ulations, solving the time-dependent Schrödinger equation
(TDSE) is challenging even for short times due to the expo-
nential scaling with the number of degrees of freedom. An
attractive approach offering a compromise between accuracy
and computational efficiency is provided by the semiclassical
initial value representation methods,2–6 which benefit from
the ultrafast character of the dynamics not only because of
lower computational cost but also because their accuracy de-
teriorates with increasing time.

The so-called dephasing representation7 (DR) is an ef-
ficient initial-value-type semiclassical approximation par-
ticularly fitted for calculations of time-resolved electronic
spectra.8, 9 The DR improves on a previous method10 inspired
by the semiclassical perturbation theory of Miller and co-
workers.11 In electronic spectroscopy, the DR and closely re-
lated approximations are known as Mukamel’s phase aver-
aging method12 or Wigner-averaged classical limit, and were
used by various authors.13–19 Shi and Geva19 derived this ap-
proximation without invoking the semiclassical propagator—
by linearizing20, 21 the path integral quantum propagator. In
the context of the mixed quantum-classical Liouville equa-
tion, Riga and Martens obtained a similar expression for the
evolution of coherences of the density operator.16 Although
the original formulation of the DR pertains to a single pair
of potential energy surfaces, the generalization to multiple
surfaces, and hence to nonadiabatic dynamics, exists.22 The
DR has many other applications; the method successfully de-
scribed, e.g., the local density of states and the transition from

a)Electronic mail: jiri.vanicek@epfl.ch

the Fermi-Golden-Rule to the Lyapunov regime of fidelity
decay.23

Yet the most attractive feature of the DR is its effi-
ciency: Motivated by numerical comparisons with other semi-
classical methods,8 it has been recently proved analytically24

that the number of trajectories required for convergence
of the DR is independent of the system’s dimensionality,
Hamiltonian, or total evolution time. The efficiency was fur-
ther increased in the cellular version of the DR,9 which was
inspired by Heller’s cellular dynamics25 and which can signif-
icantly reduce the required number of trajectories. The origi-
nal implementation of the cellular DR (CDR),9 however, does
not converge to the DR in the limit of infinite number of
trajectories.

Unlike its efficiency, the accuracy of the DR is not always
sufficient. The DR is exact in displaced harmonic oscillators12

and often accurate in chaotic systems,7 but it breaks down in
as simple systems as harmonic oscillators with different force
constants. This problem can be fixed, e.g., by replacing the
independent trajectories with N coupled Gaussians, which re-
quires solving the time-dependent Schrödinger equation in a
classically evolving Gaussian basis26 at the cost O(N3). Al-
ternatively, the breakdown can be partially remedied by aug-
menting the DR with a prefactor,27 which, however, leads to
a much higher computational cost per trajectory and also typ-
ically requires more trajectories to achieve convergence.

The first goal of the present paper is to describe a gen-
eral numerical implementation of the prefactor correction and
apply it to the calculation of time-resolved electronic spectra.
Since the numerical evaluation of the CDR requires, inciden-
tally, the same ingredients as the prefactor correction, the sec-
ond goal is to combine the advantages of the cellular approach
and prefactor correction into a single formula, and show that
the resulting method, cellular DR with prefactor (CDRP),
is able to increase both the efficiency and accuracy of the
DR. Our third goal is presenting a major improvement of the

0021-9606/2013/139(5)/054109/14/$30.00 © 2013 AIP Publishing LLC139, 054109-1
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cellularization process by employing the inverse Weierstrass
transform of the initial state as the optimal sampling weight
instead of the widely used Wigner or Husimi functions, and
by correlating the size of the cells with their number and the
number of degrees of freedom, which guarantees the conver-
gence of the CDR to the original DR in the limit of infinite
number of trajectories.

The remainder of the paper is organized as follows:
The correlation function approach and the DR approxima-
tion for evaluating time-resolved stimulated emission spec-
tra is reviewed in Sec. II; in particular, the DR, its pref-
actor correction, and its cellular version are deduced. After
explaining how the new cellular approach provides optimal
choices of the sampling weight and width of Gaussian cells,
we derive the CDRP, i.e., a method combining the prefac-
tor correction and cellularization into a single framework.
Section III contains several analytical and numerical results
testing the theory developed in Sec. II, while Sec. IV provides
conclusions.

II. THEORY

A. Time-resolved stimulated emission: Spectrum,
time correlation function, and dephasing
representation

To be specific, we will present the methodology for
time-resolved stimulated emission (TRSE); modification to
other ultrafast processes is straightforward. Within the elec-
tric dipole approximation, time-dependent perturbation the-
ory, and ultrashort pulse approximation, the dispersed28, 29

TRSE spectrum can be computed as a Fourier transform of
the following correlation function:8, 9, 28, 29

CTRSE(t, τ ) = E2
puEprTr [ρ̂g(T )μ̂geÛe(τ + t)−1

×μ̂egÛg(t)μ̂geÛe(τ )μ̂eg]. (1)

Here Epu and Epr denote the amplitudes of the pump and
probe laser pulses, ρ̂g(T ) represents the nuclear density oper-
ator in the electronic ground state at temperature T, μ̂ij is the
transition dipole moment operator coupling electronic states i
and j, τ stands for the time delay between the pump and probe
pulses, and t is the time elapsed after the probe pulse. Finally,
Ûj denotes the nuclear quantum evolution operator

Ûj = exp(−iĤj t/�) (j = g, e), (2)

with Hamiltonian Ĥj = T̂ + V̂j , where T̂ is the nuclear ki-
netic energy and V̂j is the jth potential energy surface (PES).
In all expressions, the hat denotes operators in the Hilbert
space of nuclei.

Within the Franck-Condon approximation and zero-
temperature limit, correlation function (1) reduces to

CTRSE(t, τ ) = E2
puEpr|μeg|4f (t, τ ), (3)

where

f (t, τ ) :=〈ψe(t, τ )|ψg(t, τ )〉, (4)

|ψj (t, τ )〉 :=Ûj (t)Ûe(τ )|� init〉, (5)

is a specific time correlation function and the initial state
|� init〉 is typically the vibrational ground state of the ground
PES. The TRSE spectrum, given by28

σTRSE(ω, τ ) ∝ ωE2
puE pr|μeg|4σ (ω, τ ), (6)

is proportional to the so-called wave packet spectrum σ

obtained30 as

σ (ω, τ ) = Re
∫ ∞

0
dt f (t, τ )eiωt . (7)

Correlation function (4) for the stimulated emission is a
particular example of a more general concept of fidelity
amplitude,31 defined as

f (t) = 〈�init|Û1(t, 0)−1Û2(t, 0)|�init〉, (8)

where UJ(t2, t1), J = 1, 2, is the time evolution operator for a
time-dependent Hamiltonian ĤJ (t),

ÛJ (t2, t1) = T exp

[
− i

�

∫ t2

t1

dt ′ĤJ (t ′)
]

(J = 1, 2), (9)

where T denotes the time-ordering operator.
Correlation function (4) for TRSE is obtained from the

general fidelity amplitude (8) by substituting the following
time-dependent Hamiltonians ĤJ (t) into Eq. (9):

Ĥ1(t ′) ≡ Ĥe for 0 ≤ t ′ ≤ τ + t,

Ĥ2(t ′) ≡
{

Ĥe for 0 ≤ t ′ ≤ τ,

Ĥg for τ ≤ t ′ ≤ τ + t.

(10)

Note that Ĥ2(t ′) ≡ Ĥg if τ = 0.
Besides electronic spectroscopy applications,12–14, 16–19, 32

correlation function (8) proved useful, e.g., in NMR spin
echo experiments33 and in the theories of quantum com-
putation, decoherence,34 and inelastic neutron scattering.35

Fidelity amplitude was also used as a measure of the dy-
namical importance of diabatic, nonadiabatic, or spin-orbit
couplings,22, 36 and of the accuracy of quantum molecular dy-
namics on an approximate PES.37, 38 In the context of the von
Neumann-Liouville equation, the trace of an off-diagonal el-
ement of the density matrix over environmental degrees of
freedom can be also interpreted as fidelity amplitude (see
Appendix A).16, 32, 39

In practical calculations, correlation function (8) must
usually be approximated, and DR provides an efficient semi-
classical approximation.7, 13, 14, 16–19 If we denote by xt := (qt,
pt) the phase-space coordinates at time t of a point along
a classical trajectory of the average8, 12, 27 Hamiltonian
H := (H1 + H2)/2, the DR of fidelity amplitude (8) can be
written as

fDR(t) = h−D

∫
dx0 ρW (x0)eiSDR(x0,t)/� (11)

with

ρW (q, p) ≡
∫

ds 〈q − s/2| ρ̂ init |q + s/2〉 eisT·p/�. (12)

Here D is the number of degrees of freedom, ρW de-
notes the Wigner transform of the initial density operator
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ρ̂init = |�init〉〈�init|, and SDR(x0, t) is the action due to the
difference �H := H2 − H1 along trajectory xt,

SDR(x0, t) = −
∫ t

0
dt ′ �H (xt ′ , t ′). (13)

For TRSE, �H is given by

�H ≡
{

0 for 0 ≤ t ′ ≤ τ,

Vg − Ve for τ ≤ t ′ ≤ τ + t.
(14)

Denoting the phase-space average of a quantity A(x) with re-
spect to a weight function w(x) by

〈A(x)〉w(x) :=
∫

dxA(x)w(x)∫
dx w(x)

, (15)

time correlation function (11) can be written in a compact way
as

fDR(t) = 〈eiSDR(x0,t)/�〉ρW (x0). (16)

Formula (16) can be evaluated efficiently by Monte Carlo in-
tegration. Indeed, because the convergence of the DR is in-
dependent of dimensionality, the DR is in many-dimensional
systems much more efficient than other quantum or classi-
cal algorithms for computing the fidelity amplitude.24 The
accuracy of the DR typically improves with decreasing �H
and increasing complexity of Hamiltonians H1 and H2. While
the DR is exact in displaced harmonic oscillators with arbi-
trary displacement, this first-order perturbative approximation
breaks down in some singular cases, such as when Hamilto-
nians H1 and H2 represent harmonic oscillators with signifi-
cantly different force constants,12 or when the phase portraits
of the two Hamiltonians have very different structures.

B. Prefactor correction

The above-mentioned breakdown of the DR can be par-
tially corrected by including a prefactor in the DR formula
(16).27 We now briefly derive this improved version of the
DR.

Fidelity amplitude (8) can be expressed as the expecta-
tion value of the echo operator31 Ê(t) := Û1(t, 0)−1Û2(t, 0),

f (t) = Tr [ρ̂ Ê(t)] = 〈EW (x0, t)〉ρW (x0), (17)

where EW (x0, t) is the Wigner transform of the echo operator.
Note that Ê(t) itself can be interpreted as a single “forward-
backward” evolution operator describing propagation driven
by H2 for time t followed by a propagation driven by −H1

from time t to 2t. The path labeled by xt
fb(t ′) in Fig. 1 is a

classical analog of such a forward-backward propagation.
A semiclassical approximation to the Wigner transform

EW (x0, t) consists in replacing it by a single phase-space
semiclassical propagator,40, 41

ESC(x0, t) =
∣∣∣∣det

(
I + J

2
· ∂2Sfbc

∂(x0)2

)∣∣∣∣
1
2

eiSfbc(x0,t)/�, (18)

with the constraint x0 = [xt
fb(2t) + xt

fb(0)]/2. Here I is the
identity matrix in 2D dimensions and J is the standard sym-

xt
fb(0)

xt
fb(t)

H = H2

Sfbc(x0, t)

H = −H1

xt
fb(2t)

x0

FIG. 1. Sketch of semiclassical evaluation of fidelity amplitude in phase
space. Given a phase-space point x0, the path xt ′

fb is determined by two re-
quirements: (i) for 0 ≤ t ′ ≤ t it is driven by H2 (dashed path), while for t
≤ t′ ≤ 2t it is driven by −H1 (continuous path); and (ii) x0 = (x0

fb + xt
fb)/2.

Geometrical part of the phase Sfbc(x0, t) is the shadowed area and the dotted
line is the chord between xt

fb(0) and xt
fb(2t).

plectic matrix in 2D dimensions,

J =
(

0D ID

−ID 0D

)
, (19)

where the subscripts specify the dimensionality of each
square block. More details about this semiclassical phase-
space propagator are presented in Appendix B. In Eq. (18),
phase Sfbc(x0, t) is the so-called center-action of the path
xt

fb(t ′) at time t; explicitly, this function is defined as

Sfbc(x0, t) :=
∮

pT · dq −
∫ 2t

0
dt ′H

(
xt

fb(t ′), t ′
)
, (20)

where the closed integral is evaluated along the path consist-
ing of xt

fb(t ′) and of the straight line connecting xt
fb (2t) and

xt
fb(0), as shown in Fig. 1, and

H (xt
fb(t ′), t ′) ≡

{
H2

(
xt

fb(t ′), t ′
)

for 0 ≤ t ′ ≤ t,

−H1
(
xt

fb(t ′), 2t − t ′
)

for t ≤ t ′ ≤ 2t.

(21)

Center-action (20) appears naturally in the Weyl representa-
tion of quantum mechanics.41 As mentioned in Appendix B,
the center-action is a function of the center x0 and, in general,
is multivalued: a given center x0 may be the midpoint between
the initial and final points for two or more paths (see, e.g., Fig.
10 in Appendix B). Nevertheless, we assume that Sfbc(x0, t)
has only a single branch.

Approximating the center-action in the semiclassical
echo operator (18) by the DR action, Sfbc(x0, t) 	 SDR(x0, t),
which is valid up to the first order in perturbation theory,27, 42

yields an improved approximation for fidelity amplitude given
by f (t) ≈ fDRP(t), where

fDRP(t) = 〈ADRP(x0, t)eiSDR(x0,t)/�〉ρW (x0) (22)

with

ADRP(x0, t) := ∣∣det
(
I + J · Bt

x0

)∣∣1/2
, (23)
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FIG. 2. Comparison of the standard (a) and new (b) cellularization schemes. In both panels, black circles represent the initial state, while the light-blue disks
are the Gaussian cells. (a) In the standard procedure, the number of cells N and their size λ ∈ (0, 1] are independent. The sampling weight for the cell centers,
given by the Wigner function ρW (black circle), is independent of both N and λ. (b) In the cellularization procedure proposed in the main text, both the cell size
and the sampling weight for their centers are uniquely determined by N. The weight, given by inverse Weierstrass transform C

ρW
� , is denoted with red circles.

Bt
x0 ≡ B(x0, t) := 1

2

∂2SDR(x0, t)

∂(x0)2
. (24)

We will refer to expression (22) as the DR with prefac-
tor or DRP: it corresponds to including a prefactor to the
contribution of each trajectory in the DR formula (16). The
DRP is free of caustics because the prefactor (23) cannot di-
verge. However, the prefactor is the most expensive part of
the DRP evaluation because it depends on the Hessian of the
DR phase SDR(x0, t) with respect to the initial conditions; in
Appendix C we show how to compute this Hessian from the
derivatives of the stability matrix of the classical trajectory.
Finally, note that switching the PESs in the definition (8) of
fidelity amplitude is equivalent to taking the complex conju-
gate of this equation. DRP preserves this property because
of the identity det(I + J · Bt

x0 ) = det(I − J · Bt
x0 ), proven in

Appendix D.

C. Cellularization

The CDR was developed in Ref. 9 in order to further ac-
celerate the convergence of the DR in the spirit of Heller’s
cellular dynamics.25 The main idea of the CDR consists in
decomposing the Wigner transform of the initial state into
phase-space cells and evaluating the contribution of an entire
cell of nearby trajectories approximately, using the dynamical
information collected along a single, central trajectory. Here
we describe a simpler and more rigorous cellularization pro-

cess than that used in the original CDR (Ref. 9) and other
cellularization25, 43 or Filinov filtering44–46 schemes. In par-
ticular, the new methodology provides both a natural criterion
for cell size [see Eq. (25)] and a natural sampling weight for
the cell centers [given by inverse Weierstrass transform (28)].
Most importantly, unlike the previous approaches, in the limit
of infinite number of trajectories, the new methodology con-
verges to the original, noncellular method (in our case, the
DR).

In standard cellularization or Filinov filtering
procedures,9, 25, 43–46 the initial state is covered with phase-
space Gaussians as in Fig. 2(a), the centers of these Gaussians
being sampled from a given distribution (denoted with a black
circle), typically a Wigner or Husimi transform of the initial
state, which is independent of the size and number of cells.
Then one decreases the cell size (measured by parameter λ,
defined so that each cell has phase-space volume λ2DhD) until
the approximate treatment of contributions of neighboring
trajectories (typically involving quadratic expansion of the
action) becomes sufficiently accurate. Independently, the
number of cells N is increased until convergence.

There are several problems with this standard approach:
First, decreasing the size of the cell to zero (λ → 0) for a fixed
number of cells N eventually results in the initial state not be-
ing fully covered [see the middle row of Fig. 2(a)]. Second,
in case that the quadratic expansion of the action is accurate,
taking the limit N → ∞ for a fixed nonzero width λ is waste-
ful since many cells are overlapping [see the middle column
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054109-5 Zambrano, Šulc, and Vaníček J. Chem. Phys. 139, 054109 (2013)

of Fig. 2(a)]. Third, if the quadratic expansion is inaccurate,
taking the limit N → ∞ for a fixed width λ converges to a
result different from the original noncellular method. Fourth,
for Gaussian initial states and N = 1, the optimal choice of
a single cell is clearly the initial state, but in the standard ap-
proach the width and position of the cell are uncorrelated with
the number of cells [see the top row of Fig. 2(a)].

The solution of the first three problems is simple and pro-
vided by scaling the size of the cell with the number of cells
and dimensions according to

λ = N−1/2D, (25)

guaranteeing that the phase-space volume of the initial state
is equal to the total volume of all cells [Fig. 2(b)]. This
avoids an ad hoc choice of the width of the cell, replacing
two limiting processes λ → ∞ and N → ∞ with a single
process N → ∞, and pictorially corresponds to going along
the diagonal from the top left to the bottom right corner of
Fig. 2(a). In the derivation presented below it is shown that the
fourth problem is solved by sampling the centers of the cells
from the inverse Weierstrass instead of the Wigner transform
of the initial state. As we shall see, this inverse Weierstrass
transform, represented by red circles in Fig. 2(b) is a natural
sampling weight, which is correlated to the size of the cell. If
the initial state is a Gaussian, for N = 1, the single cell has
uniquely defined size and position, equal to the size and po-
sition of the initial state. In the limit of infinitely many very
small cells, their centers are sampled from the Wigner trans-
form. All together, N determines both the size of each cell and
the sampling weight for their centers.

To put the above ideas into a precise mathematical form,
consider a phase-space Gaussian function centered at the
origin,

G�(x) := �
D
√

det � e−xT·� ·x/2, (26)

where � is a 2D × 2D real, symmetric, positive definite ma-
trix, whose determinant is inversely proportional to the square
of the phase-space volume occupied by G� , while the prefac-
tor in Eq. (26) ensures normalization of G� : h−D

∫
dx G�(x)

= 1. In particular, if �i,i = 2/σ 2 and �D+i, D+i = 2σ 2/�2

(for i = 1, . . . , D and σ > 0), then G�(x) coincides with the
Wigner transform of a D-dimensional Gaussian wave packet
with the same width σ in all D coordinate directions. How-
ever, G�(x) of Eq. (26) is, in general, not required to be a
Wigner transform of any physical quantum state. Most im-
portantly, G�(x) can be arbitrarily narrow both in position and
momentum, and hence does not have to satisfy the Heisenberg
uncertainty principle.25

Employing sufficiently narrow Gaussian functions (26)
with fixed � as our cells, the Wigner transform of a general
state can be expanded as

ρW (x) ≡ (
C

ρW

� ∗ G�

)
(x)

:= h−D

∫
dz C

ρW

� (z) G�(x − z), (27)

where the asterisk denotes the convolution of G� with C
ρW

� .
Function C

ρW

� , playing a role of “continuous expansion co-
efficient,” is known as the inverse Weierstrass transforma-

tion of ρW .47 Thanks to normalization of ρW and G� , inte-
grating Eq. (27) over x implies that C

ρW

� is also normalized:
h−D

∫
dz C

ρW

� (z) = 1.
Equation (27) can be inverted via the convolution theo-

rem to obtain

C
ρW

� (z) = F−1[F[ρW ]/F[G�]]

≡ h−D

∫
dη eηT·�−1·η/2�

2
eizT·η/�F[ρW ](η), (28)

where F[·] denotes the phase-space Fourier transform,

F[ρW ](η) := h−D

∫
dx ρW (x) e−ixT·η/�, (29)

while F−1[·] stands for its inverse. The Fourier transform of
G� can be evaluated analytically as

F[G�](η) = e−ηT·�−1·η/2�
2
. (30)

From Eq. (28), we see that C
ρW

� (z) is well-defined only if
F[ρW ] decays sufficiently faster than F[G�]. In other words,
the Gaussian cells must be sufficiently narrow in order that
the integral (28) over η converges.

If the initial state is a Gaussian, i.e., ρW (x) = G�0 (x
− z0), the cell functions G� in Eq. (27) can be conveniently
chosen as scaled versions of G�0 with widths in all coordi-
nate and momentum directions multiplied by a factor λ, where
0 < λ ≤ 1, which is equivalent to setting � = �0/λ2. The
width of cell G� may vary from zero (a delta function) for
λ = 0 to the width of the initial state G�0 for λ = 1. The in-
verse Weierstrass transform (28) can be evaluated analytically
for all admissible λ (i.e., 0 ≤ λ ≤ 1) as

C
ρW

� (z) = G(z − z0), (31)

where

 = (1 − λ2)−1�0 = λ2(1 − λ2)−1�. (32)

Note that for λ > 1 the inverse Weierstrass transform (28)
diverges. The limiting cases of the sampling weight (31) are

C
ρW

� (z) = G(z − z0) →
{

hDδ(z − z0), λ = 1,

G�0 (z − z0), λ → 0+,
(33)

and are represented, respectively, by the red dot at the top and
red circle at the bottom of Fig. 2(b). Indeed, for λ = 1, there
is no freedom in the choice of the center of the single cell,
whereas in the limit λ → 0, the sampling weight converges to
ρW .

Inserting the cellular expansion (27) into the DR formula
(16) yields

fDR(t) = h−2D

∫
dz0 C

ρW

� (z0)
∫

dx0 G�(x0 − z0)eiSDR(x0,t)/�.

(34)
In order to carry out the integration over x0 analytically,
one expands the DR phase about point z0 as SDR(x0, t)
≈ S CDR(x0, t ; z0), where the CDR action is

SCDR(x0, t ; z0) := SDR(z0, t) + δxT · αt
z0 + δxT · Bt

z0 · δx.

(35)
In the last equation, δx := x0 − z0, αt

z0 := ∂SDR(z0)/∂z0 is the
gradient of SDR at z0, and Bt

z0 , already defined in Eq. (24), is,
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up to a factor 1/2, the Hessian of SDR at z0. Using the quadratic
expansion (35), the integral over x0 in the double integral rep-
resentation (34) of the DR is performed analytically to yield
the final result—CDR,

fCDR(t) = 〈ACDR(z0, t)eiSDR(z0,t)/�〉CρW
� (z0) (36)

with

ACDR(z0, t) := ∣∣det
(
� · Kt

z0

)∣∣1/2
e
−(αt

z0 )T·Kt

z0 ·αt

z0 /2�
2

, (37)

� · Kt
z0 = (

I − 2iBt
z0 · �−1/�

)−1
. (38)

Straightforward numerical implementation evaluates
fCDR(t) in Eq. (36) by Monte Carlo importance sam-
pling. This means arithmetically averaging the estimator
ACDR exp(iSDR/�) over the set of N initial conditions sam-
pled from the weight C

ρW

� using, e.g., the Box-Muller algo-
rithm for Gaussian initial states or Metropolis algorithm for
general states. [The positivity of C

ρW

� is for Gaussian initial
states guaranteed by Eq. (31).] Equivalently, one can think of
this procedure as expanding the Wigner transform ρW of the
initial state into a finite set of Gaussians, i.e.,

ρW (x) ≈
N∑

n=1

Cn G�(x − zn), (39)

where Cn = 1/N and centers {zn} are sampled from C
ρW

� (z).
This expansion is then combined with the quadratic expansion
(35) of SDR and substituted into the DR formula (11).

As mentioned above, a natural value of the scaling
parameter is λ = N−1/2D for which the N cells G�0/λ2 cover
essentially the same phase-space volume as the initial state
ρW (x) = G�0 (x − z0). Moreover, for N = 1, Eq. (25) gives λ

= 1. From Eq. (33), we see that C
ρW

� (z) degenerates to a delta
function and the single cell is identical to ρW . On the other
hand, N → ∞ implies λ → 0+ and Eq. (38) yields � · Kt

z0

→ I and Kt
z0 → 0. Since for λ → 0+, C

ρW

� (z) →
G�0 (z − z0) = ρW (z) and ACDR → 1, comparison of
Eqs. (16) and (36) confirms that the CDR reduces in the
limit N → ∞ to the original DR, as promised. Note that this
desirable property was satisfied neither by the original CDR
nor by standard cellularization or Filinov filtering procedures
for the Van Vleck or Herman-Kluk propagators.

Several further improvements are possible: First, a signif-
icant boost in computational efficiency could be gained with
ideas implemented in the generalized Filinov filtering45, 46 or
stationary phase Monte Carlo method.48 Motivated by the
generalized Filinov method, for instance, one would add a
complex linear term to the exponent of the Gaussian cell to
ensure that the overall phase of the integrand of the x0 inte-
gral in Eq. (34) were approximately stationary, making the
original integral more amenable to Monte Carlo integration.
This is in contrast to the original Filinov approach,44 which
does not employ an additional phase. Another improvement
relies on Sobol sampling,49 which actively seeks different
initial conditions while preserving the normal distribution,
and was used, e.g., by Walton and Manolopoulos.43 Finally,
it is advantageous to allow the expansion coefficients Cn in

Eq. (39) to differ from 1/N. Specifically, one finds the optimal
coefficients Cn for given, already sampled, Gaussian centers
{zn} by minimizing the residual L2 error of the expansion (39)
under the constraints

N∑
n=1

Cn = 1 and (40a)

Cn ≥ 0, n = 1, . . . , N, (40b)

which guarantee that fCDR(0) = 1 and |fCDR(t)| ≤ 1. From
numerical point of view, this amounts to solving a convex
quadratic program.50 As demonstrated in Sec. III, this proce-
dure further enhances efficiency, nevertheless the acceleration
due to the cellularization procedure itself is dominant.

In practice, one should always use all five “tricks,” i.e.,
sampling (36) from the inverse Weierstrass transform, scal-
ing (25) of the cells with N, generalized Filinov filtering,45, 46

Sobol sampling,49 and optimal coefficients (40a) and (40b).
Although clearly beneficial, generalized Filinov filtering and
Sobol sampling were not employed here, in order to sepa-
rate the effect of the three new ideas presented: sampling (36)
from the inverse Weierstrass transform, scaling (25) of the
cells with N, and optimal coefficients (40a) and (40b).

D. Cellular DR with prefactor correction

The numerical prerequisites of the CDR (Subsection II C)
and DRP (Subsection II B) are the same—the cost per trajec-
tory is determined by evaluating the Hessian of SDR with re-
spect to initial conditions. This allows for a straightforward
combination of the methods, without increasing the cost per
trajectory, by multiplying the contribution (36) of each tra-
jectory with the prefactor (23) and thus obtaining the cellular
dephasing representation with prefactor (CDRP),

fCDRP(t) = 〈ACDRP(z0, t)eiSDR(z0,t)/�〉CρW
� (z0), (41)

where

ACDRP(z0, t) := ADRP(z0, t)ACDR(z0, t). (42)

In principle, the CDRP should benefit both from the enhanced
efficiency of the CDR and improved accuracy of the DRP, as
depicted in Fig. 3.

As for the asymptotic computational complexity of
Eq. (41) per trajectory, a straightforward implementation
scales with system’s dimensionality D and total propagation
time t as O(D3t). Linear scaling with time is easily verified
by direct inspection of Eq. (41), while the cubic dependence
on D is due to the necessity to propagate the stability ma-
trix and due to the matrix operations implicit in Eqs. (36)
and (37). The CDRP is thus cheaper than, e.g., the popular
Forward Backward Initial Value Representation51 which
would scale as O(D3t2).

III. NUMERICAL EXAMPLES

In this section, we will show how the CDRP approxima-
tion improves the accuracy of the time correlation function (8)
and stimulated emission spectrum (7) for several well-known
systems.
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FIG. 3. Relations between several approximations for time correlation func-
tion (8). Typically, the accuracy increases along the horizontal arrows, cor-
responding to adding the prefactor (22), while the efficiency improves in the
downward direction, corresponding to the cellularization procedure (36).

A. Harmonic oscillators

As the first example we consider two quadratic Hamilto-
nians in D dimensions

Hg = 1

2
xT · Hg · x, (43a)

He = 1

2
(x − d)T · He · (x − d) + V0, (43b)

where V0 is the gap between the two potential wells,

Hj := ∂2Hj

∂x2
=

(
kj 0D

0D m−1

)
(j = g, e), (44)

is the 2D × 2D Hessian matrix of Hj, kj being the force-
constant matrix, mij = miδij is the D × D matrix of masses,
and d = (dq, dp) is the phase-space displacement of the two
Hamiltonians: e.g., dq is the coordinate distance between the
two potential minima. The Hessian of the average Hamilto-
nian is given by the (invertible) 2D × 2D matrix

H := ∂2H

∂x2
=

(
k 0D

0D m−1

)
, (45)

where k := (kg + ke)/2. The path driven by the average Hamil-
tonian is

xt = Mt · (x0 − δ) + δ, (46)

where Mt := exp(t J · H) is the stability matrix for H
and δ := H−1 · He · d/2. Since the Hamiltonians (43) are
quadratic, it is possible to evaluate the DR phase analytically
for an arbitrary initial condition x0 as

SDR(x0, t) ≡ (x0 − δ)T · Bt · (x0 − δ) + (x0 − δ)T · vt + at ,

(47)
where

Bt ≡ −1

2

∫ t

0
dt ′(Mt ′)T · �H · Mt ′ , (48)

vt := −2
∫ t

0
dt ′(Mt ′)T ·

(
H + �H

2

)
· δ, (49)

at :=
(

V0 + 1

2
δT · �H · δ+

)
t (50)

with �H := Hg − He and δ+ := H−1 · Hg · d/2. Note that
in the harmonic systems, the cellular schemes are exactly
equal to their noncellular analogs, e.g.,

fCDR(t) ≡ fDR(t) = 〈eiSDR(x0,t)/�〉ρW (x0). (51)

[However, if a discrete Gaussian expansion (39) is used, the
accuracy of the results will be limited by the error inherent in
Eq. (39).] Since Bt and hence ADRP(t) are in this case inde-
pendent of x0, the DRP and CDRP can be calculated for an
arbitrary initial state as

fCDRP(t) ≡ fDRP(t) ≡ ADRP(t)fDR (t). (52)

Explicit formulas for one degree of freedom are

Bt = −�k

(
t + sin(2ωt)/2ω sin2(ωt)/mω2

sin2(ωt)/mω2 t
(mω)2 − sin(2ωt)

2ω(mω)2

)
, (53a)

vt =
(

1 − �k

2mω2

)2 (
mω sin(ωt)
1 − cos(ωt)

)
, (53b)

at = Vot + d2

8
�k

[
1 −

(
�k

2mω2

)2
]

t. (53c)

Here, ω2 := k/m, �k := kg − ke, and dp = 0, i.e., d has only
position components. Additionally, the determinant prefactor
is given by

ADRP(t) =
∣∣∣∣∣1 +

(
�k

4mω

)2
(

t2 − sin2 ωt

ω2

)∣∣∣∣∣
1
2

. (54)

Figure 4 shows the fully converged time correlation func-
tions for zero time delay in one-dimensional harmonic oscil-
lator (43) using a Gaussian initial state. We observe the effect
of the prefactor (23): it enhances the accuracy compared with
the DR, so that the approximate time correlation function does
not decay with increasing time. Note that the Fourier trans-
forms of time correlations shown in Fig. 4 can be interpreted
both as TRSE spectra with zero time delay and as continuous-
wave absorption spectra.

Now we consider a two-dimensional harmonic system
(43) with dq = (d1, 0), dp = (0, 0),

kg =
(

k1 0

0 k1

)
, and ke =

(
k1 0

0 k2

)
, (55)

which is a prototype of the breakdown of the DR in sim-
ple molecular systems. While the DR describes exactly the
behavior of the “excited” mode corresponding to displaced
simple harmonic oscillators,12 this agreement is lost due to
the decay of the DR in the “silent” mode, corresponding
to harmonic oscillators with different force constants [as in
Fig. 4(a)], in which the DR breaks down. In other words,
the breakdown of the DR for the uninteresting mode cov-
ers up the accurate information about the interesting mode.
Figure 5 shows the time correlation function for time delay
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FIG. 4. Time correlation functions for time-resolved stimulated emission spectrum with a zero time delay (τ = 0) in a one-dimensional harmonic potential
(43) with V0 = 0, force constants kg = 1 and ke = 1.2. The initial state is a Gaussian wave packet with width σ and centered at z0. (a) m = 1, σ = 1, z0 = (0,
0), and d = (0, 0). (b) Detail of panel (a). (c) m = 3, σ = 1, z0 = (0.3, 0.3), and d = (0, 0). (d) m = 3, σ = 2, z0 = (0.5, 0), and d = (1, 0).

τ = 10, confirming that the DRP can in this system almost
completely remove the error introduced by the DR.

B. Pyrazine model

The next system is based on the four-dimensional vi-
bronic coupling model taking into account normal modes ν1,
ν6a, ν9a, and ν10a of pyrazine.52 We employ the S0 and S1 sur-
faces from Ref. 52, but disregard the nonadiabatic coupling
between states S1 and S2 since for the S0 → S1 excitation this
coupling is much less important than for the S0 → S2 excita-
tion and since nonadiabatic dynamics is not our primary fo-
cus. However, even this simplified model requires a nontrivial
Duschinsky rotation53 connecting normal modes of the S0 and
S1 states.

0.0
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0.6

0.8

1.0

0 20 40 60 80

|f
|

t

QM DRN→∞ = CDRN=1
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FIG. 5. Time correlation function for time-resolved stimulated emission
spectrum in a two-dimensional harmonic oscillator model. Displacements are
d = (dq, dp) with dq = (1, 0) and dp = (0, 0), V0 = 10, and m = 1, and force
constants [according to Eq. (55)] are k1 = 1 and k2 = 2. The initial state is
the ground state of the ground PES. Time delay τ = 10.

Since the pyrazine model is globally quadratic, the ac-
tion expansion in Eq. (35) is exact (as discussed in Subsection
III A) and thus the fully converged DR and DRP correlation
functions can be obtained by the cellular variants CDRN=1 and
CDRPN=1 of these methods obtained with a single trajectory.

Figure 6(a) shows pyrazine TRSE correlation function
f(t, τ ), calculated for a particular delay time τ ≈ 48 fs and
multiplied by a phenomenological damping function54

χ (t) := cos2[πt/(2T )] θ (T − t), (56)

where T denotes the total propagation time. Parameters of the
calculation are summarized in the caption of Fig. 6. The DRP
is shown in Fig. 6(a) to yield an excellent agreement with
the quantum calculation. This is also confirmed in the corre-
sponding spectrum [Fig. 6(b)], computed as the Fourier trans-
form (7) of the damped correlation function.

Finally, Fig. 6(c) compares the convergence behavior of
individual methods. The convergence is quantified by the rel-
ative L2 error achieved for N � Nref trajectories,

η(N,Nref) := ‖(fN − fNref ) χ‖/‖fNref χ‖, (57)

where ‖f ‖2 := ∫ T

0 dτ ′|f (τ ′)|2. The subscript N of fN in
Eq. (57) emphasizes that the quantity fN was computed with
N trajectories, while the fully converged results are denoted
by N → ∞. Time integrals appearing implicitly in Eq. (57)
are evaluated with Simpson’s method. The cellularization ac-
celerates convergence by lowering the number of trajectories
required to achieve the same statistical error by about two
orders of magnitude [Fig. 6(c)]. Additional minor improve-
ment is achieved by optimizing the expansion coefficients in
Eq. (39) using constraints (40).
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FIG. 6. Time-resolved stimulated emission in the pyrazine model of
Subsection III B. Initial state is the ground state of the S0 surface, the de-
lay time τ = 2 × 103 a.u. ≈ 48 fs. (a) Time correlation function [damped by
χ (t) of Eq. (56), shown as a dashed-dotted line]. (b) Corresponding spec-
trum. (c) Convergence error η [defined in Eq. (57)] of the damped correlation
function as a function of the number of trajectories N. The points labeled by
“opt.” were computed with optimized expansion coefficients Cn of Eq. (40)
(see Subsection II C).

C. Quartic oscillator

After discussing harmonic systems, which are rather sim-
ple even in high dimensions, let us turn to the opposite limit
of chaotic dynamics, which can present difficulties even in
few dimensions. In particular, we consider a two-dimensional
chaotic quartic oscillator.55 The two potential energy surfaces,

Vj (q1, q2) = q2
1q2

2

2
+ βj

4

(
q4

1 + q4
2

)
, (58)

differ only in the parameter β j > 0. Chaotic behavior is due
to the coupling term q2

1q2
2/2 since in the limit β j → ∞, the

Hamiltonian T + Vj becomes separable and hence integrable.
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FIG. 7. Time dependence of the DR action difference δSDR of Eq. (59) cal-
culated for two neighboring trajectories (initial conditions z0 and w0). (a)
Quartic oscillator (Fig. 8). (b) Collinear NCO molecule (Fig. 9). Delay times
are as in Figs. 8 and 9, z0 is the phase-space center of the Gaussian initial
state (of width σ ) and w0 = z0 + (σ, 0)/2. The order of the expansion (35) is
distinguished by line type: “linear” (dashed), “quadratic” (dash-dotted), and
“linear + 1/2” (dotted). The symbol 1/2 signifies that the derivatives of the
stability matrix in Eq. (C2) are neglected. Solid line shows numerically exact
δSDR.

Due to the chaotic character of this system, one ex-
pects that the central ingredient of the cellularization, i.e., the
quadratic expansion of the action difference in Eq. (35) will
be poor and hinder convergence. This is indeed confirmed in
Fig. 7(a), showing the difference of the DR action (13) for two
neighboring trajectories specified by initial conditions z0 and
w0, i.e.,

δSDR(t) := SDR(w0, t) − SDR(z0, t). (59)

This quantity is then compared with predictions based on
the quadratic expansion (35) and its linear part. The ex-
pansion order denoted “linear + 1/2” is a widely used
approximation25, 43 to the quadratic expansion (35) within
which one neglects the third derivatives of the potential (see
Appendix C). Figure 7(a) shows clearly that in the quartic os-
cillator the quadratic expansion (35) is reliable only for short
times and that the linear expansion is superior to the presum-
ably more accurate “linear + 1/2” approach.

As a consequence, Fig. 8, comparing the TRSE correla-
tion functions, shows that the method of choice for the quar-
tic oscillator is the “bare” DR [Fig. 8(a)], since the CDR
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FIG. 8. Time correlation function for time-resolved stimulated emission in quartic oscillator (58) corresponding to zero time delay calculated with the
DR (a) and DRP (b), as well as with their cellularized variants CDR (c) and CDRP (d). Initial state is a Gaussian wave packet [Eq. (26)] with σ1 = σ2 = 1
centered at (Qinit, Pinit), where Qinit = (0, 4) and Pinit = (4, 0). Masses m1 = m2 = 1 and the potential energy surfaces (58) are specified by β0 = 0.2 and
β1 = 0.2125.

[Fig. 8(c)] converges more slowly, while the DRP and CDRP
are reliable only for short times since the prefactor (23) (un-
derstood as a function of time for fixed initial conditions)
grows quickly and oscillates widely at later times. Due to
the breakdown of the truncated Taylor expansion of action
in CDR and DRP, this conclusion is likely to hold in other
chaotic systems as well.

D. Collinear NCO molecule

Typical chemical systems are neither globally harmonic
as our pyrazine-based model, nor—fortunately—as strongly
chaotic as the quartic oscillator. In our last example we there-
fore consider a realistic, anharmonic system, in order to see
how the CDR, DRP, and CDRP might perform in typical sit-
uations. For this purpose, we chose a two-dimensional model
of the collinear NCO molecule based on the X2� (ground)
and A2�+ (excited) PESs.56 The PESs are given in Ref. 56
in a form of a polynomial fitted to ab initio calculations on
the domain r1, 2 ∈ [2, 2.6] a.u. and θ ∈ [152◦, 208◦], specified
in r1 (N–C), r2 (C–O) bond-length coordinates, and the bond
angle θ . We set θ = π (equilibrium value) and describe the re-
duced two-dimensional surfaces in the r1 and r2 coordinates
by a simplified two-term form

V (r1, r2) = V0 +
∑
j=1,2

Dj

{
1 − exp

[− βj

(
rj − re

j

)]}2
, (60)

where the equilibrium bond lengths re
j are the same as in

Ref. 56, while the parameters V0, D1,2, and β1,2 were ob-
tained by fitting potential (60) to the functional form of
Ref. 56 on the domain rj ∈ [re

j − δ, re
j + δ] with δ = 0.15 a.u.

Resulting values are summarized in Table I. These parame-
ters differ from the values employed in our earlier work8, 9

and should better reflect the dynamics of this system. Scaled
normal mode coordinates of the X2� PES were used so that
the vibrational ground state is in the harmonic approxima-
tion described by a Gaussian with unit widths centered at the
origin.

The initial state for the TRSE calculation was prepared
by the following procedure.57 First, we computed the X2�

ground vibrational state by imaginary-time propagation. This
state was then pumped to the A2�+ PES, propagated there for
a net time of 520 a.u. ≈ 12.6 fs, dumped to X2�, and propa-
gated for additional 480 a.u. ≈ 11.6 fs. In order to facilitate
computation of C

ρW

� (z) in Eq. (28), we approximated the re-
sulting state by a single Gaussian. An independent quantum
calculation confirmed that this does not impact the spectrum
significantly.

The TRSE correlation function for a delay time of 29 fs is
displayed in Fig. 9(a), confirming that the prefactor correction
extends the agreement of the DR with the quantum correlation
function to longer times. As a consequence, the prefactor cor-
rection yields sharper peaks in the corresponding spectrum,
shown in Fig. 9(b). Finally, Fig. 9(c), comparing the statisti-
cal convergence of the DR, CDR, DRP, and CDRP, confirms
that in NCO the cellularization increases numerical efficiency,
although the effect is—as expected—smaller than in the har-
monic pyrazine model [Fig. 6(c)].

TABLE I. Parametersa of the collinear NCO model (60).

V0 D1 β1 re
1 D2 β2 re

2

X2� −167.653 0.150 1.698 2.302 0.333 1.160 2.246
A2�+ −167.549 0.144 1.984 2.234 0.398 1.140 2.233

aAll quantities are given in atomic units.
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FIG. 9. Time-resolved stimulated emission in the NCO model of Sub-
section III D. Initial state is a non-stationary state prepared by a pump-
dump procedure9, 57 discussed in the text, the delay time τ = 1200 a.u.
≈ 29 fs. (a) Time correlation function [damped by χ (t) of Eq. (56), shown
as a dashed-dotted line]. (b) Corresponding spectrum. (c) Convergence
error η [defined in Eq. (57)] of the damped correlation function as a
function of the number of trajectories N. The points labeled by “opt.”
were computed with optimized expansion coefficients Cn of Eq. (40) (see
Subsection II C).

E. Computational details

Classical trajectories needed in the DR, CDR, DRP, and
CDRP were calculated with a fourth-order symplectic integra-
tor, while quantum calculations employed the corresponding
fourth-order split-operator method.8 Time steps used for the

pyrazine, quartic oscillator, and collinear NCO models were
0.5 a.u., 10−3, and 2.5 a.u., respectively. Also note that the
branch of the square root in the prefactor in Eq. (37) was
gradually adjusted in the course of the propagation in order
to ensure that the phase of the prefactor be continuous in
time.

IV. CONCLUSIONS

We have introduced the CDRP, a rather accurate and
efficient semiclassical method for computing ultrafast time-
resolved electronic spectra. The CDRP is a two-stage refine-
ment of the DR of fidelity amplitude: A prefactor correction,
which typically increases accuracy, is followed by a cellu-
larization procedure increasing efficiency (see Fig. 3). The
new method has the same computational cost per trajectory as
the two intermediate refinements, CDR and DRP; this cost is
determined by propagating the stability matrix and its deriva-
tives. While the cost per trajectory is significantly higher than
the cost of each DR trajectory, the reduction in the required
number of trajectories can in many situations result in higher
efficiency compared with the DR.

The new methodology has been tested on several sys-
tems. In harmonic potentials (Figs. 4 and 5), pyrazine-based
model (Fig. 6), and collinear NCO molecule (Fig. 9), the
TRSE correlation functions and spectra computed with the
CDRP were more accurate and required fewer trajectories
than the corresponding quantities computed with the origi-
nal DR. For harmonic potentials, analytical formulas have
been derived; particularly, we have shown that cellularized
calculations using a single trajectory are identical to the fully
converged noncellular methods since the second-order ex-
pansion of the DR phase is exact. Moreover, in harmonic
potentials the prefactor is the same for all trajectories. In
contrast, in systems with highly nonlinear or chaotic dynam-
ics, such as the quartic oscillator, the second-order approxi-
mation to the semiclassical action SDR breaks down and its
use can decrease both the accuracy and efficiency. Interest-
ingly, in such systems the “bare” DR can perform rather
well [see Fig. 8(a)], in agreement with previously published
results.7

An important result in its own right is the new simple,
yet rigorous cellularization scheme for the DR, in which the
size and the sampling weight of the Gaussian cells changes
with their number. A similar cellularization scheme using
the inverse Weierstrass transform should be useful also for
more general quantum dynamics using semiclassical initial
value representations such as the Heller-Herman-Kluk-Kay
propagator.
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APPENDIX A: CONNECTION OF FIDELITY WITH
QUANTUM COHERENCE

Consider the von Neumann-Liouville equation

i�
dρ̂(t)

dt
= [Ĥ , ρ̂(t)] (A1)

for the evolution of the molecular density operator ρ̂ consist-
ing of two initially coupled electronic states, evolved, starting
at time zero, with an uncoupled Hamiltonian Ĥ ,

ρ̂(t) :=
(

ρ̂11(t) ρ̂12(t)

ρ̂21(t) ρ̂22(t)

)
and Ĥ =

(
Ĥ11 0

0 Ĥ22

)
. (A2)

The off-diagonal element of ρ̂ evolves according to

dρ̂21(t)

dt
= − i

�

(
Ĥ22ρ̂21(t) − ρ̂21(t)Ĥ11

)
, (A3)

with an echo-like solution

ρ̂21(t) ≡ e−iĤ22t/�ρ̂21(0)e+iĤ11t/�, (A4)

whose trace over nuclear degrees of freedom is fidelity ampli-
tude (8) with ĤJ (t) := ĤJJ and |� init〉〈�init| replaced with a
more general ρ̂21(0).

APPENDIX B: PHASE-SPACE PROPAGATOR

Semiclassical propagator in position representation,
known as the Van Vleck propagator, is given by the expres-
sion

〈qb|e−iĤ t/�|qa〉SC =
∑

qa
j�qb

(2iπ�)−D/2 det

(
∂2Sj

∂qa∂qb

)−1/2

× eiSj (qa,qb ;t)/�−iνj π/2, (B1)

where the summation is performed over all trajectories j of
the classical Hamiltonian H starting from qa and arriving at
qb after time t, Sj is the classical action along the jth path, and
ν j is its Morse index.

The phase-space propagator is the Wigner transform of
the evolution operator,

UW (x, t) =
∫

dDs 〈q − s/2| e−iĤ t/� |q + s/2〉 ei sT·p/�.

(B2)
The integrand in the last equation includes the position prop-
agator between q + s/2 and q − s/2. Using the Van Vleck
propagator, we can obtain the semiclassical expression for
Eq. (B2),40, 41

USC(x̄, t) = 2D
∑

j

∣∣det
(
I + Mt

j

)∣∣−1/2
exp

[
i

�
Sc,j (x̄, t)

]
,

(B3)
where the sum runs over all paths j centered at x̄, i.e., paths
for which (x0 + xt )/2 = x̄ [see Fig. 10], Mt is the stability
matrix of the flow x0 → xt, and the function Sc(x̄, t), called
center-action, is defined as

Sc(x̄, t) =
∮

pT · dq −
∫ t

0
H (xt ′ , t ′) dt ′,

x0
1

xt
1

xt
1

x̄̄x

x0
2

xt
2

xt
2

FIG. 10. Geometrical interpretation of the semiclassical phase space propa-
gator. Two trajectories (xt ′

1 and xt ′
2 ) contributing to USC(x̄, t) are shown; x̄ is

the midpoint of both. Geometrical parts of the center-actions Sc,1 and Sc,2 are
displayed as filled and hatched areas, respectively.

where the first term is the symplectic area enclosed by a
closed path consisting of a trajectory centered at x̄ and the
chord connecting this trajectory’s final and initial points.

In general, the center-action is multivalued and each of
its branches is associated with a classical trajectory centered
at x̄, as shown in Fig. 10. The stability matrix, defined as Mt

:= ∂xt/∂x0, defines the local linearization of the classical path
in the tangent phase-space and the phase-space propagator has
caustics whenever Mt has an eigenvalue −1.40 Moreover, Mt

is equal to the Cayley transform of 1
2J · ∂2Sc(x̄, t)/∂x̄2,

Mt =
(

I − J

2
· ∂2Sc

∂x̄2

)
·
(

I + J

2
· ∂2Sc

∂x̄2

)−1

, (B4)

and the determinant in phase-space propagator (B3) can be
written in terms of the center action as41

22D[det(I + Mt )]−1 = det

(
I + J

2
· ∂2Sc

∂x̄2

)
. (B5)

The last relation follows from the fact that both Mt and the
Hessian of Sc(x̄, t) define the same local linearization of the
classical equations of motion in a neighborhood of a classical
trajectory xt ′ . This linearization is described by the mapping

x0 = x̄ + J

2
· ∂Sc

∂x̄
→ xt = x̄ − J

2
· ∂Sc

∂x̄
. (B6)

For short times, the Wigner transformation EW (x, t) of
the echo operator can be approximated by a propagator (B3)
with a single classical trajectory,27, 41 as in Eq. (18).

APPENDIX C: DERIVATIVES OF THE DR PHASE
IN EQ. (35)

One of the main numerical prerequisites of both the DRP
and CDR is the second order expansion of the DR phase,
SDR(x0, t), as indicated in Eq. (35). Here we describe a sym-
plectic numerical procedure for obtaining the time derivatives
of the phase-space derivatives ∂ |α|SDR(x0, t)/∂(x0)

α
for |α|

≤ 2 (multi-index notation was used).
As in other semiclassical methods, the knowledge of the

Hessian of the potential is required for propagating the sta-
bility matrix Mt. Below we show that in order to obtain the
Hessian of SDR(x0, t) with respect to x0, third derivatives of
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the potential, ∇3V , are also needed. Although the third deriva-
tive is in principle required also in Cellular Dynamics25 and
Cellularized Frozen Gaussian approximation,43 the associated
computational cost has led the authors of these methods to ne-
glect the contribution of terms depending on ∇3V . However,
as demonstrated in Fig. 7(a), this contribution can be essen-
tial even in simple realistic models such as the collinear NCO
molecule.

First, consider components of the gradient of SDR,

∂SDR

∂x0
j

=
∫ t

0
dt ′

∂�H

∂xt ′
k

∂xt ′
k

∂x0
j

= −
∫ t

0
dt ′ �F t ′

k Mt ′
kj , (C1)

where �H = H2 − H1, �Ft ≡ −∂�H/∂xt is the force dif-
ference vector, and repeated indexes imply summation. Simi-
larly, the components of the Hessian of SDR are

∂2SDR

∂x0
i ∂x0

j

=
∫ t

0
dt ′

(
�Ht ′

ksM
t ′
kiM

t ′
sj − �F t ′

k Nt ′
k,ij

)
, (C2)

where �Ht denotes the Hessian of �H at time t and

Nt
k,ij := ∂2xt

k

∂x0
i ∂x0

j

= ∂

∂x0
i

Mt
kj . (C3)

While the time integrals in Eqs. (C1) and (C2) are evaluated
using composite Newton-Cotes formulas, the integrands can
be propagated symplectically. The algorithm for Nt propaga-
tion, e.g., is obtained by applying the chain rule to the preced-
ing equation,

Nt+δt
k,ij = ∂xt+δt

k

∂xt
s

Nt
s,ij + ∂2xt+δt

k

∂xt
n∂xt

s

Mt
niM

t
sj , (C4)

whereas the symplectic propagation scheme for the stability
matrix was described previously9, 58

Mt+δt
ij = ∂xt+δt

i

∂xt
k

Mt
kj . (C5)

Derivatives of phase-space coordinates in Eqs. (C4) and (C5)
are obtained from symplectic integrators for q and p, which
are for standard Hamiltonians of the form

∑
i p

2
i /2mi + V (q)

based on a Lie-Trotter-type59 decomposition of a short-time
propagator into elementary steps within which the system is
propagated under the influence of either the kinetic or the po-
tential term only. Action of the kinetic term

∑
i p

2
i /2mi for

time δt results in a phase-space shear preserving the momen-
tum,

(qt+δt, pt+δt ) = (qt + m−1 · pt δt, pt ), (C6)

whereas the action of the potential term V (q) changes mo-
mentum and preserves position

(qt+δt, pt+δt ) =
(

qt, pt − ∂V (qt )

∂qt
δt

)
. (C7)

Since the only nonlinear dependence of (qt+δt, pt+δt) on (qt, pt)
stems from the presence of the potential gradient in Eq. (C7),
the second derivative terms in Eq. (C4) are nonzero only dur-
ing the “p-propagation” (C7) and explicitly involve deriva-
tives of the Hessian

∂2pt+δt
k

∂qt
i ∂qt

j

= −δt
∂3V (qt )

∂qt
k∂qt

i ∂qt
j

. (C8)

As already mentioned, these third derivatives of the poten-
tial, which should appear in other semiclassical propagation
schemes25, 43 as well, are usually neglected in order to reduce
computational cost. Yet, in Sec. III D we have shown that they
can play an essential role even in rather simple systems such
as the NCO.

APPENDIX D: COMPLEX CONJUGATE OF EQ. (22)

As discussed in Subsection II B, switching the roles of
the PESs in Eq. (4) for the correlation function corresponds
(for τ = 0) to taking the complex conjugate of this equation.
Likewise, when one interchanges the PESs, the DR phase and
hence the matrix Bt

x0 change the sign. However, since the pref-
actor ADRP in Eq. (22) is real, it might seem that the DRP is
incompatible with this operation.

Here we demonstrate that this is not the case by proving
that det(I + J · Bt

x0 ) = det(I − J · Bt
x0 ). To this end, consider

a general, symmetric, 2D × 2D matrix A and let a denote any
of the eigenvalues of J · A. Then

0 = det(J · A − aI ) = det(A − aJ T)

= det(A + aJ ) = det(A + aJ )T

= det(A + aJ T) = det(J · A + aI ), (D1)

where we have used the properties −J = J T = J−1,
det J = 1, and that taking the transpose of an arbitrary square
matrix does not affect its determinant.

Equation (D1) shows that the eigenvalues of J · A come
in pairs (a, −a). This directly implies that det(I + J · A)
= det(I − J · A). [This also follows from setting a = 1 in
Eq. (D1) and using the fact that the matrix J · A is of even
order.]
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