12 research outputs found

    Deep-water antipatharians: Proxies of environmental change

    Get PDF
    Deep-water (307–697 m) antipatharian (black coral) specimens were collected from the southeastern continental slope of the United States and the north-central Gulf of Mexico. The sclerochronology of the specimens indicates that skeletal growth takes place by formation of concentric coeval layers. We used 210Pb to estimate radial growth rate of two specimens, and to establish that they were several centuries old. Bands were delaminated in KOH and analyzed for carbon and nitrogen stable isotopes. Carbon values ranged from _16.4‰ to _15.7‰; the oldest specimen displayed the largest range in values. Nitrogen values ranged from 7.7‰ to 8.6‰. Two specimens from the same location and depth had similar 15N signatures, indicating good reproducibility between specimens

    Status of scientific knowledge, recovery progress, and future research directions for the Gulf Sturgeon, Acipenser oxyrinchus desotoi Vladykov, 1955

    Get PDF
    The Gulf Sturgeon, Acipenser oxyrinchus desotoi, is an anadromous species of Acipenseridae and native to North America. It currently inhabits and spawns in the upper reaches of seven natal rivers along the northern coast of the Gulf of Mexico from the Suwannee River, Florida, to the Pearl River, Louisiana, during spring to autumn. Next to the Alligator Gar (Atractosteus spatula), the Gulf Sturgeon is currently the largest fish species occurring in U.S. Gulf Coast rivers, attaining a length of 2.35 m and weights exceeding 135 kg, but historically attained a substantially larger size. Historically, the spawning populations existed in additional rivers from which the species has been wholly or nearly extirpated, such as the Mobile and Ochlockonee rivers, and possibly the Rio Grande River. Most Gulf Sturgeon populations were decimated by unrestricted commercial fishing between 1895–1910. Subsequently most populations remained unrecovered or extirpated due to continued harvest until the 1970s–1980s, and the construction of dams blocking access to ancestral upriver spawning grounds. Late 20th Century harvest bans and net bans enacted by the several Gulf Coast states have stabilized several populations and enabled the Suwannee River population to rebound substantially and naturally. Hatchery supplementation has not been necessary in this regard to date. Sturgeon are resilient and adaptable fishes with a geological history of 150 million years. Research undertaken since the 1970s has addressed many aspects of Gulf Sturgeon life history, reproduction, migration, population biology, habitat requirements, and other aspects of species biology. However, many knowledge gaps remain, prominently including the life history of early developmental stages in the first year of life. Natural population recovery is evident for the Suwannee River population, but seems promising as well for at least four other populations. The Pascagoula and Pearl River populations face a challenging future due a combination of natural and anthropogenic factors. These two populations, and perhaps the Escambi River population, are particularly vulnerable to periodic mass mortality due to major stochastic events including hurricanes, flooding, hypoxia, and toxic spills. The present manuscript provides a comprehensive synthesis of knowledge regarding the Gulf Sturgeon at the organismal and population levels, identifying knowledge gaps as priorities for future research. Topics not treated in the present synthesis include morphology, internal biology, physiology, and endocrinology. Topics only briefly treated include parasites and diseases, contaminants, and sturgeon aquaculture

    Deep-water antipatharians: Proxies of environmental change

    Get PDF
    Deep-water (307–697 m) antipatharian (black coral) specimens were collected from the southeastern continental slope of the United States and the north-central Gulf of Mexico. The sclerochronology of the specimens indicates that skeletal growth takes place by formation of concentric coeval layers. We used 210Pb to estimate radial growth rate of two specimens, and to establish that they were several centuries old. Bands were delaminated in KOH and analyzed for carbon and nitrogen stable isotopes. Carbon values ranged from _16.4‰ to _15.7‰; the oldest specimen displayed the largest range in values. Nitrogen values ranged from 7.7‰ to 8.6‰. Two specimens from the same location and depth had similar 15N signatures, indicating good reproducibility between specimens

    Status of scientific knowledge, recovery progress, and future research directions for the Gulf Sturgeon, Acipenser oxyrinchus desotoi Vladykov, 1955

    Get PDF
    The Gulf Sturgeon, Acipenser oxyrinchus desotoi, is an anadromous species of Acipenseridae and native to North America. It currently inhabits and spawns in the upper reaches of seven natal rivers along the northern coast of the Gulf of Mexico from the Suwannee River, Florida, to the Pearl River, Louisiana, during spring to autumn. Next to the Alligator Gar (Atractosteus spatula), the Gulf Sturgeon is currently the largest fish species occurring in U.S. Gulf Coast rivers, attaining a length of 2.35 m and weights exceeding 135 kg, but historically attained a substantially larger size. Historically, the spawning populations existed in additional rivers from which the species has been wholly or nearly extirpated, such as the Mobile and Ochlockonee rivers, and possibly the Rio Grande River. Most Gulf Sturgeon populations were decimated by unrestricted commercial fishing between 1895–1910. Subsequently most populations remained unrecovered or extirpated due to continued harvest until the 1970s–1980s, and the construction of dams blocking access to ancestral upriver spawning grounds. Late 20th Century harvest bans and net bans enacted by the several Gulf Coast states have stabilized several populations and enabled the Suwannee River population to rebound substantially and naturally. Hatchery supplementation has not been necessary in this regard to date. Sturgeon are resilient and adaptable fishes with a geological history of 150 million years. Research undertaken since the 1970s has addressed many aspects of Gulf Sturgeon life history, reproduction, migration, population biology, habitat requirements, and other aspects of species biology. However, many knowledge gaps remain, prominently including the life history of early developmental stages in the first year of life. Natural population recovery is evident for the Suwannee River population, but seems promising as well for at least four other populations. The Pascagoula and Pearl River populations face a challenging future due a combination of natural and anthropogenic factors. These two populations, and perhaps the Escambi River population, are particularly vulnerable to periodic mass mortality due to major stochastic events including hurricanes, flooding, hypoxia, and toxic spills. The present manuscript provides a comprehensive synthesis of knowledge regarding the Gulf Sturgeon at the organismal and population levels, identifying knowledge gaps as priorities for future research. Topics not treated in the present synthesis include morphology, internal biology, physiology, and endocrinology. Topics only briefly treated include parasites and diseases, contaminants, and sturgeon aquaculture
    corecore