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Supplement Article

Status of scientific knowledge, recovery progress, and future research directions for

the Gulf Sturgeon, Acipenser oxyrinchus desotoi Vladykov, 1955

By K. J. Sulak1,*, F. Parauka2,*, W. T. Slack3, R. T. Ruth4, M. T. Randall1, K. Luke2, M. F. Mettee5,* and
M. E. Price6

1Wetland and Aquatic Research Center, US Geological Survey, Gainesville, FL, USA; 2US Fish and Wildlife Service, Panama
City, FL, USA; 3U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA; 4Louisiana Department of
Wildlife and Fisheries, Inland Fisheries, Lacombe, LA, USA; 5Geological Survey of Alabama, Tuscaloosa, AL, USA;
6University of Florida, Gainesville, FL, USA

Summary

The Gulf Sturgeon, Acipenser oxyrinchus desotoi, is an
anadromous species of Acipenseridae and native to North

America. It currently inhabits and spawns in the upper
reaches of seven natal rivers along the northern coast of the
Gulf of Mexico from the Suwannee River, Florida, to the

Pearl River, Louisiana, during spring to autumn. Next to the
Alligator Gar (Atractosteus spatula), the Gulf Sturgeon is
currently the largest fish species occurring in U.S. Gulf Coast

rivers, attaining a length of 2.35 m and weights exceeding
135 kg, but historically attained a substantially larger size.
Historically, the spawning populations existed in additional
rivers from which the species has been wholly or nearly extir-

pated, such as the Mobile and Ochlockonee rivers, and possi-
bly the Rio Grande River. Most Gulf Sturgeon populations
were decimated by unrestricted commercial fishing between

1895–1910. Subsequently most populations remained unre-
covered or extirpated due to continued harvest until the
1970s–1980s, and the construction of dams blocking access

to ancestral upriver spawning grounds. Late 20th Century
harvest bans and net bans enacted by the several Gulf Coast
states have stabilized several populations and enabled the
Suwannee River population to rebound substantially and

naturally. Hatchery supplementation has not been necessary
in this regard to date. Sturgeon are resilient and adaptable
fishes with a geological history of 150 million years. Research

undertaken since the 1970s has addressed many aspects of
Gulf Sturgeon life history, reproduction, migration, popula-
tion biology, habitat requirements, and other aspects of spe-

cies biology. However, many knowledge gaps remain,
prominently including the life history of early developmental
stages in the first year of life. Natural population recovery is

evident for the Suwannee River population, but seems
promising as well for at least four other populations. The
Pascagoula and Pearl River populations face a challenging
future due a combination of natural and anthropogenic fac-

tors. These two populations, and perhaps the Escambia
River population, are particularly vulnerable to periodic

mass mortality due to major stochastic events including hur-
ricanes, flooding, hypoxia, and toxic spills. The present

manuscript provides a comprehensive synthesis of knowledge
regarding the Gulf Sturgeon at the organismal and popula-
tion levels, identifying knowledge gaps as priorities for future

research. Topics not treated in the present synthesis include
morphology, internal biology, physiology, and endocrinol-
ogy. Topics only briefly treated include parasites and dis-
eases, contaminants, and sturgeon aquaculture.

Introduction

The present manuscript has been prepared based on the accu-
mulated scientific knowledge of the Gulf Sturgeon (GS) to the

present time. It builds upon a paper (Sulak et al., 2009b) with
that same goal originally presented in the symposium
‘Acipenseriformes in North America – where do we stand in

2009?’, convened at the American Fisheries Society (AFS)
139th Annual Meeting, Nashville, TN), 30 August-3 Septem-
ber. The symposium was organized by the North American
Chapter of the World Sturgeon Conservation Society

(WSCS), now the North American Sturgeon and Paddlefish
Society (NASPS) (Haxton et al., 2016 – this volume). An out-
growth of the 2009 symposium, this resultant manuscript pro-

vides a comprehensive synopsis of all that is known about the
GS and identifies knowledge gaps to guide future research.

Materials and Methods

This manuscript relies both on published research and
important unpublished technical reports prepared by

resource agencies and academic institutions, as well as histor-
ical reports, photographs, and oral history recordings of

*Retired Disclaimer: Any use of trade, product, or firm names is

for descriptive purposes only and does not imply endorsement

by the U.S. Government.

U.S. Copyright Clearance Centre Code Statement: 0175-8659/2016/32S1–87$15.00/0

J. Appl. Ichthyol. 32 (Suppl. 1) (2016), 87–161
© 2016 Blackwell Verlag GmbH
ISSN 0175–8659

Received: September 30, 2016
Accepted: November 2, 2016

doi: 10.1111/jai.13245

Applied Ichthyology
Journal of

proyster2
Text Box
This document is a U.S. government work and is not subject to copyright in the United States.



sturgeon fishermen from the early 20th century. Key unpub-
lished information sources comprise the extensive mark and
recapture databases consolidated by the U.S. Geological Sur-
vey – Wetland and Aquatic Research Center (USGS-

WARC). A database has been assembled for each GS natal
river population based on research undertaken since 1977 by
the U.S. Fish and Wildlife Service (USFWS), U.S. Geologi-

cal Survey (USGS), U.S. Army Corps of Engineers
(USACE), Mississippi Museum of Natural Sciences
(MMNS), Louisiana Department of Wildlife and Fisheries

(LDWF), other state natural resources agencies, several uni-
versities, and several non-government organizations (NGOs).
These consolidated databases, maintained in Microsoft

Excel©, are current up to and including 2008, except for the
Suwannee River database which is current through 2015.
They have been used herein to prepare species distribution
maps, length frequency distribution plots, weight-length

plots, and to provide fundamental summary information that
has not otherwise been published.

Life history stage terminology for the GS

Life history stage terminology employed for the GS in the

present manuscript are defined in terms of age (days or
months) and/or TL, recognizing however that these criteria
are approximate with wide individual variation. Certain
stages are illustrated in Fig. 1 and are defined as follows:

Ova = unfertilized eggs retained in the ovaries prior to
spawning.

Black eggs = recently spawned, unfertilized or just-ferti-

lized eggs (embryos) attached to substrate.
Brown or yellow-brown eggs = fertilized eggs (embryos)

in advanced stages of embryo development, attached to sub-

strate.
Embryo = developing stage within the egg.

Free embryo = hatched embryo after emerging from the
egg at ca 6.8–8.8 mm TL (in the literature alternately termed
yolksac larva, pre-larva, or eleutheroembryo [Balon, 1971]).
This is a non-dispersal stage in the GS.

Larva = exogenously-feeding individual after consump-
tion of the yolksac and expulsion of the yolksac plug at age
5–8 days, 14.7–17.5 mm TL. This is the GS stage that is ini-

tially a free-swimming hemi-benthic, hemi-pelagic dispersal
stage, later transforming to a completely benthic existence.

Young-of-the-Year (YOY). YOY = all age-0 stages from

larva through first migration to the estuary in January-Feb-
ruary (at age 9 months, 330–450 mm TL).

Black-stage YOY = YOY of age 2–4 months, � 85–
150 mm TL, in which the body is pigmented dull black
dorso-laterally. This is apparently a non-dispersal stage that
occupies riverbed deposits of black decaying leaf litter.

Bicolored-stage YOY = YOY of age 4–9 months, � 150–
450 mm TL, in which the body acquires the typical adult
bicolored pigmentation, tan to gray dorsolaterally, cream
colored ventrally, scutes light gray to whitish. This is a forag-

ing stage that disperses widely within the natal river.
Juvenile = age-0 through � age-6 individual, <900 mm

TL, in which gonads remain undeveloped. This stage con-

ducts an annual seasonal movement back and forth between
riverine freshwater and estuarine brackish water.

Subadult = age-6 through � age 9–12 (sex dependent)
individual, >900 mm TL, <� 1350 mm TL. This stage, in

which early stages of gonad development are observed, con-
ducts an annual seasonal movement between the river and
the open Gulf of Mexico (GOMEX).

Adult = individual >� 1350 mm TL in which gonads
mature and spawning occurs, and which conducts an annual
seasonal movement between the river and the open

GOMEX.

Taxonomy and phylogeny

Scientific name: Acipenser oxyrinchus desotoi Vladykov, 1955.
AFS English common name: Atlantic Sturgeon (subspecies

vernacular names are not official AFS common names).
Vernacular names: Gulf Sturgeon, Gulf of Mexico Sturgeon.
When described by Vladykov (1955), sturgeon specimens

from the GOMEX were designated as a subspecies of the
Atlantic Sturgeon (AS), based on morphological criteria con-
firmed by later studies (Vladykov and Greeley, 1963; Woo-

ley, 1985). Subsequently, GOMEX specimens have been
distinguished from Atlantic specimens by use of the vernacu-
lar names Gulf of Mexico Sturgeon and Gulf Sturgeon. Both
have been widely applied, especially the latter. However, nei-

ther name has official AFS common name status. Results of
nuclear DNA analyses (King et al., 2001) have demonstrated
substantial genetic distance between the two nominal sub-

species (below). The authors have observed that these genetic
distances are more consistent with phylogenetic differentia-
tion at the species level, rather than subspecies level, a matter

which begs formal resolution. Furthermore, results of recent
life history investigations (e.g., Kynard and Parker, 2004)
reinforce developmental and behavior distinctions between
the GOMEX and Atlantic counterparts in the earliest

Fig. 1. Gulf Sturgeon early life history stages: (a) 2.1 mm recently-
spawned black egg deposited on a fiber matrix floor buffer pad egg
sampler in the Suwannee River (USGS photograph); (b) 2.8 mm diam-
eter fertilized and hydrated late development egg (embryo) similarly
collected (USGS photograph); (c) ~3.0 mm diameter wild-spawned
egg (embryo) in fourth cleavage, 16-cell, stage with some adherent
sand particles (USGS photograph, K. Sulak); (d) Conecuh River
80 mm TL, 2.5 month old, black-stage YOY (Alabama Department of
Conservation and Natural Resources photograph, S. Rider); (e) Yel-
low River 313 mm TL, 4.5 month old YOY in bicolor-stage (brown
dorsolaterally, cream-white ventrolaterally with white lateral scutes)
(Alabama Geological Survey photograph, M. Mettee)
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developmental stages. Overall, recent evidence suggests that
elevation of the GS to species level taxonomic status would
be appropriate. In the present paper, and in the Status of
Scientific Knowledge of North American Sturgeon volume, the

GS is treated as a distinct taxonomic entity.

Distribution, abundance, mortality, and population trends

General distribution – rangewide

Prior to fishery exploitation beginning in 1886, and subse-

quent range contractions and natal river extirpations due to
habitat alterations, the GS home range probably extended
from Southwest Florida to South Texas. Originally, repro-

ductive populations probably inhabited most of the larger
Gulf Coast Rivers, with the exception of the Mississippi
River, from the Suwannee River to the Rio Grande River.

Spawning populations currently inhabit seven rivers from
northwestern Florida to eastern Louisiana (Fig. 2). Proceed-
ing from east to west, these include the Suwannee, Apalachi-
cola, Choctawhatchee, Yellow, Escambia/Conecuh,

Pascagoula, and Pearl/Bogue Chitto rivers. Commercial
landings (Townsend, 1900, 1902; Alexander, 1905) and his-
torical accounts indicate that the Ochlockonee River (Town-

send, 1901; Florida Outdoors 1959; Swift et al., 1977),
Mobile-Alabama-Tombigbee river system, and possibly the
Rio Grande River (Townsend, 1900) also originally sup-

ported spawning populations. Whether or not the present
small Ochlockonee River population (probably numbering at
least 100 individuals) (Table 1) spawns in that impounded

river remains uncertain. Despite occasional records (Rey-
nolds, 1993), the species has probably been extirpated from
the extensively impounded, fragmented, and dredged Mobile
River system, where one of the largest ever commercial GS

catches was reported in 1902 (Alexander, 1905). A spawning
population may also have been present in the Rio Grande
River, based on a large commercial sturgeon catch in 1897

from estuarine and coastal waters, Cameron County, Texas

(Townsend, 1900). The historical population known from
Tampa Bay was extirpated in three years of commercial fish-
ing (Townsend, 1902). This fishery was conducted in winter
(Huff, 1975), rather than during the spring spawning immi-

gration when most sturgeon fisheries were conducted. This
suggests that GS were using the Tampa Bay estuary only for
winter feeding. If derived from the Suwannee River, these

winter transients would have returned to that natal river in
spring, explaining the absence of a spring immigration fishery
in Tampa Bay. Reynolds (1993) compiled a small number of

anecdotal records of the GS in the Mississippi River, sug-
gesting occasional straying into that river. Otherwise, the GS
appears not to utilize this river, home to three other freshwa-

ter sturgeon species, the Lake Sturgeon (LS) (Acipenser ful-
vescens), Shovelnose Sturgeon (SVS) (Scaphirhynchus
platorynchus), and Pallid Sturgeon (PS) (S. albus).
Winter straying and spring to autumn probing excursions

up numerous smaller coastal rivers results in an overall
extralimital GS distribution from South Florida to South
Texas. Coastal rivers that are too short (Randall et al., 2013)

to provide YOY habitat or lack appropriate upriver habitat
required for spawning nonetheless may serve as suitable sum-
mer holding habitat or as temporary use habitat. Widespread

incidental records in many small rivers, Texas to South Flor-
ida, have been well documented (Reynolds, 1993). Incidental
records from non-spawning GOMEX rivers have been
reported for the Perdido (M. Mettee, AGS, unpubl. data),

St. Marks, and Styx rivers in Florida; the Blakely, Magnolia,
and Tensaw rivers in Alabama; the Escatawpa in Mississippi;
and the Atchafalaya, Amite, Tangipahoa, Tchefuncte, and

Tickfaw rivers in Louisiana (Davis et al., 1970; Jue,1989;
Reynolds, 1993; Rogillio et al., 2001). Gulf Sturgeons have
never been reported from several small coastal Florida rivers

between the Ochlockonee River and Tampa Bay, including
the Econfina, Fenholloway, Steinhatchee, Waccasassa, and
Withlacoochee (south) rivers. The Weeki Wachee and Aucilla

rivers are exceptions. The mouth of the Weeki Wachee River
at Bayport, FL, was the site of an early historical record of
the species (Fowler, 1923). And in 2012, following the atypi-
cally early Tropical Storm Debby (24–28 June), a subadult

GS got stranded and died in the brackish lower reach of that
river (J. Wilcox, Florida Wildlife Conservation Commission
[FWC], pers. comm., 9 August 2012). There is also one

record from the lower Aucilla River where a 142 cm TL GS
was captured on baited hook and line in November 2000
(Woods ‘N Water, 2000).

Typically in winter, there have been sporadic reports of
GS from coastal and estuarine areas well south of Tampa
Bay, including Charlotte Harbor, the Caloosahatchee River,
Florida Bay, and Florida Keys (Reynolds, 1993; USFWS,

GSMFC and NMFS, 1995). These may represent extralimital
records of Suwannee River GS in years when exceptionally
cold winters expanded the thermally-suitable GS marine

feeding zone further south than normal (Wooley and Cra-
teau, 1985, citing C. R. Robins, Univ. Miami, pers. comm.).
However, use by GS of certain other non-spawning rivers

is more than incidental. For example, large numbers of GS
consistently use one small Blackwater River area 12 river
kilometers (rkm1 ) from the river mouth as a seasonal

Fig. 2. Contemporary geographic range of the Gulf Sturgeon (ex-
cluding rare extralimital records from Texas and from Florida Bay).
See several map figures that follow for detail of contemporary and
historical distributions within individual natal rivers

Scientific knowledge of Gulf Sturgeon 89



Table 1
Abundance and mortality estimates (or total number of unique individuals in a sampling period) for net-vulnerable Gulf Sturgeon popula-
tions from the seven known spawning rivers, plus Ochlockonee and Blackwater rivers

River
Sample period Bar mesh (cm)

Population
estimate
(mean N &
CI range)

Size (mm)
or age
(year) criterion Model & (type)

Mortality
estimate (%) Reference

Apalachicola
1983

5.7-15.2 282
181–645 CI

>450 FL S closed NA Wooley and Crateau (1985)

Apalachicola
1983–1988

NA 60–282
37–645 CI

>450 FL
>755 FL
(1985 only)

Not specified NA Barkuloo (1988)

Apalachicola
mid-1980s

NA >500 Age 2+ ASMR (3) (5–7) assumed Pine and Martell (2009a)

Apalachicola
1982–1991

2.5–10.2 88–218a

61–321 CI
>450 TL JS – model

B open (2)
33 Zehfuss et al. (1999)

Apalachicola
1983, 1985,
1990

2.5–15.2 101–149a >450 mm TL CAP model
Mt closed (1)

NA Zehfuss et al. (1999)

Apalachicola
1993

2.5–15.2 19–77a

�23 to 127 CI
>450 TL JS – model

D closed (1)
21 Zehfuss et al. (1999)

Apalachicola
1998

3.8–11.4 ~250
~180–320 2SE
from graph

>700 FL CAP model
Mt closed (1)

(6) assumed
ages 4–30

Pine and Allen (2005)

Apalachicola
1998

3.8–11.4 270
NA

>635 TL MS closed (1) NA USFWS (1999)

Apalachicola
1999

3.8–11.4 ~260
~230–310 2SE
from graph

>700 FL CAP model
Mt Closed (1)

(6) assumed
ages 4–30

Pine and Allen (2005)

Apalachicola
1999

3.8–11.4 321
199–1010

>635 TL MS closed (1) NA USFWS (1999)

Apalachicola
2004

3.8–11.4 ~350
~260–440 2SE
from graph

>700 FL CAP model
Mt closed (1)

(6) assumed
ages 4–30

Pine and Allen (2005)

Apalachicola
2003

3.8–11.4 350
221–648 CI

>660 TL MS closed (1) NA USFWS (2004)

Apalachicola
2005

NA ~1000 Age 2+ ASMR (3) (5–7) assumed Pine and Martell (2009a)

Apalachicola
2006

3.8–12.7 N = 216 unique
fish (Nt = 289)

NA Actual ‘N’ from
net samples

NA USFWS (2006); USFWS
unpubl. data

Apalachicola
1982–2006

2.5–15.2 NA >600 TL ERD (2) 37.5 USGS 2010 unpubl. data
from Apalachicola database

Apalachicola
2010

5.7–15.2 1282 NA P closed NA USFWS unpubl.
F. Parauka

Apalachicola
2014

7.6–12.7 503
450–570

<900 FL
(juveniles)

MS closed NA USFWS unpubl.
A. Kaeser

Apalachicola
2014

7.6–12.7 785
631–1037

>900 FL
(subadults
& adults)

MS closed NA USFWS unpubl.
A. Kaeser

Blackwater
2013

12.7 328b

164–661 CI
>900 FL Program

Mark POP open
0.18 USFWS 2015 unpubl.

A. Kaeser
Choctawhatchee
1999–2000

6.4–15.2 2000–3000 >610 TL P closed (1) NA USFWS (2001)

Choctawhatchee
2001

6.4–15.2 2800 >610 TL MP open (2) 16 USFWS (2002)

Choctawhatchee
2007

6.4–15.2 2800 >890 FL MP? open (2)? NA USFWS (2009)

Escambia
2003

6.4–15.2 687
316–1058 CI

NA NR closed (1) NA USFWS (2003) (uncorrected)

Escambia
2003

6.4–15.2 558
83–1033 CI

NA NR closed (1) NA USFWS (2004)
(2003 estimate corrected)

Escambia
2003

6.4–15.2 554
373–735 CI

NA NR closed (1) NA USFWS (2008)
(2003 estimate revised)

Escambia
2004

6.4–15.2 573
402–745 CI

>483 TL NR closed (1) NA USFWS (2004)

Escambia
2006

6.4–15.2 451
338–656 CI

>610 TL NP closed (1) NA USFWS (2008)

90 K. J. Sulak et al.



Table 1
(Continued)

River
Sample period Bar mesh (cm)

Population
estimate
(mean N &
CI range)

Size (mm)
or age
(year) criterion Model & (type)

Mortality
estimate (%) Reference

Escambia
2015

6.4–12.7 373
253–548 CI

>900 FL Program Mark
POP open

0.03 USFWS 2015 unpubl.
A. Kaeser

Ochlockonee
1991–2012

6.4–12.7 N = 156
unique fish

650–2060 TL Actual ‘N’ from
net samples

NA USFWS unpubl.
(and USGS database)

Pascagoula
1999

10.0–18.0 162
34–290 CI

>1180 TL MS closed (1) NA Ross et al. (2000, 2001a)

Pascagoula
1999

10.0–18.0 200
120–381 CI

>1180 TL CAP model
Mo closed (1)

NA Ross et al. (2001a)

Pascagoula
2000

10.0–18.0 181
38–323 CI

>690 TL MS closed (1) NA Ross et al. (2001a)

Pascagoula
2000

10.0–18.0 216
124–429 CI

>690 TL CAP model
Mo closed (1)

NA Ross et al. (2001a)

Pascagoula
1999

7.6–18.0 193
117–363 CI

>615 FL CAP model
Mt Closed (1)

NA Ross et al. (2000, 2001a);
Heise et al. (2002)

Pascagoula
2000

7.6–18.0 206
120–403

>615 FL CAP model
Mt closed (1)

NA Ross et al. (2001a)
Heise et al. (2002)

Pascagoula
1997–2002

7.6–18.0 234
142–394

>615 FL JS open (2) NA Heise et al. (2002)

Pearl 1993 7.0–11.4 67
28-∞

>320 FL S closed (1) NA Morrow et al. (1996)

Pearl
1994

7.0–11.4 88
59–171

>320 FL S closed (1) NA Morrow et al. (1996)

Pearl
1995

7.0–11.4 124
85–236

>320 FL S closed (1) NA Morrow et al. (1996)

Pearl
1992–1996

3.8–17.8 292
202–528

>age 2 S closed (1) 34 Morrow et al. (1998)

Pearl
2000–2001

5.1–10.2 430
323–605

>623 FL NP closed (1) 7 Rogillio et al. (2001)

Pearl
2000–2003

5.1–11.5 503
actual ‘N’

>381 FL NA
sample ‘N’

NA Rogillio et al. (2007)

Pearl
1986–2007c

5.1–11.5 224–376
168–603 CI

>350 TL CJS, Phi
pt open (2)

40.5 USGS unpubl., Sulak
and Randall (2009)

Suwannee
1972–1973

12.7 NA Age 8–12 NA 46.2 Huff (1975)

Suwannee
1976–1979

NA 3500 NA NA NA Meylan (1977)d

Suwannee
1976–1979

NA 3000–4000 NA NA NA Hollowell (1980)

Suwannee
1987–1992

12.7 1504–3066
2285 � 398 SE

NA JS open (2) NA Rago (1993)

Suwannee
1986–1994

12.7 1504–3066
2285 � 398 SE

>869 TL JS open (2) NA Carr et al. (1996b)

Suwannee
1986–1997

12.7 2097–5312
3152 � 369 SE

>759 FL JS open (2) NA Chapman et al. (1997)

Suwannee
1986–1998

10.2–12.7 7650 >600 TL ERD (1) 16 Sulak and Clugston (1999)

Suwannee
1986–1995

12.7 5500 >1000 TL TSopen (2) 17 Pine et al.(2001)

Suwannee
mid-1980s

12.7 2000 Age 2+ ASMR (3) NA Pine and Martell (2009a)

Suwannee
mid-1990s

12.7 3000–5000 Age 2+ ASMR (3) (10–20)
assumed

Pine and Martell (2009a)

Suwannee
2006

10.2 9728
6488–14 664 CI

≥1000 TL CJS open (2) 12.9 USGS unpubl.

Suwannee
2006

10.2 14 496
7745–27 428e CI

≥400 TL CJS open (2) 11.3 Randall and Sulak (2008)

Suwannee
2007

1.9–15.2 8877
6351–12 446

>1000 TL PMMS open 11.01 USGS unpubl. 2016
M. Randall

Suwannee
2012–2013

1.9–15.2f 9743
3437–29 653e CI

≥1000 TL PMMS open 11.04 USGS unpubl. 2016
M. Randall

Yellow
2001–2003

10.0–17.0 500–911
378–1550 CI

>880 FL
(~1000 TL)

CJS open (2) 11.9 Berg et al. (2007)
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holding and/or migration staging area (USFWS, 2005, 2008;

A. Kaeser, USFWS unpubl. data; N. Craft, Northwest Flor-
ida Aquatic Preserves, unpubl. data; USGS-WARC unpubl.
database). GS aggregate in Cooper Basin (Carr, 1983; Craft

et al., 2001), a lake-like river basin which may formed as an
old meander got cutoff at its upper end, widened and
remained connected at its lower end to the Blackwater River,
or may have formed by sink hole subsidence (Jue, 1989). The

rectangular 6 m deep portion of this basin was deepened in
the late 19th century to serve as a timber catchment area.
The Blackwater River, probably several deep basins in the

lower river, was extensively targeted in early commercial GS
fishery (Alexander, 1905), and Cooper Basin in particular for
decades thereafter (Carr, 1983). It appears to serve the same

lower river holding-resting-staging area function for the Yel-
low and Escambia River GS populations (Craft et al., 2001;
Berg, 2004) as does the deep Brothers River tributary of the

Apalachicola River (Wooley and Crateau, 1985), 23–31 rkm
from its mouth. In both systems, these deep lower river hold-
ing/staging areas lie within tidal reaches, but above the influ-
ence of salinity. Stewart et al. (2012) have identified three

summer holding areas in the lower 30 rkm of the Escambia
River, all close enough to the river mouth to serve a pre-emi-
gration staging function.

Sturgeon records reported from Bermuda as ‘common
sturgeon’ or as Acipenser sturio (European Sturgeon or Sea
Sturgeon), (Jones, 1876; Hurdis, 1897; Beebe and Tee-Van,

1933; Smith, 1997) and French Guiana (as Acipenser guianen-
sis Bertin, 1940), most probably pertain to the AS, not the
GS, which typically limits its migrations to movements along
the inner continental shelf, with maximum movements of

typically <200 km away from the natal river (Edwards et al.,
2007; Parauka et al., 2011). Unlike its GOMEX counterpart,
the AS has displayed some remarkable long distance oceanic

movements. Hudson River adults have been recaptured as
far south as North Carolina along the U.S. East Coast

(Dovel and Berggren, 1983; Waldman et al., 1996; Bain,

1997) – a distance of approximately 900 km. Bay of Fundy
satellite-tagged AS have been detected 1500 km away in
Quebec, having traveled a mean of 44 km day�1 (Taylor

et al., 2016). Microsatellite DNA (mtDNA) investigations
have documented even wider coastal spread of Hudson River
fish from the St. Lawrence River, Canada, to the Altamaha
River, Georgia (King et al., 2001; Wirgin et al., 2015). The

species has also undertaken at least one trans-Atlantic excur-
sion to Europe. Genetic and archeological evidence shows
that AS originating from northern North American colo-

nized the Baltic Sea approximately 1200 years ago, flour-
ished, and were exploited by humans until fished out
(Ludwig et al., 2002, 2008; Ludwig and Gessner, 2007).

Additional evidence of further AS excursions to Europe and
apparent hybridization with the European Sturgeon has
recently been reported (Chassaing et al., 2013; Nikulina and

Schm€olcke, 2016). Records from Bermuda and French Gui-
ana suggest additional trans-oceanic migrations.

General abundance – major river populations

Currently, GS natal river populations decrease in abundance

in this approximate order based on gill net sampling pro-
grams: Suwannee, Choctawhatchee, Yellow, Escambia, Apa-
lachicola, Pearl, and Pascagoula rivers (Table 1). However,

the presumed non-spawning population in the Ochlockonee
River may be larger than that in either the Pearl or Pasca-
goula rivers. Knowledge of river-specific abundance may

change in the near future as Sidescan SONAR (SSS) remote
sensing surveys are conducted to estimate total numbers of
GS within a given river. It has been repeatedly stated

(Huff,1975; Wooley and Crateau, 1985; Pine and Martell,
2009a,b; Ahrens and Pine, 2014) that the Apalachicola and
Suwannee rivers originally sustained the largest GS fisheries
at the turn of the 20th century. Thus, it has been assumed

Table 1
(Continued)

River
Sample period Bar mesh (cm)

Population
estimate
(mean N &
CI range)

Size (mm)
or age
(year) criterion Model & (type)

Mortality
estimate (%) Reference

Yellow
2010–2011.

6.4–15.2 1036
724–1348

All vulnerable
to 6.4–15.2 cm
bar mesh net

P closed NA USFWS unpubl.
A. Kaeser

ASMR = Age-structured mark-recapture model, CAP = Program Capture, CJS = Cormac-Jolly-Seber model, ERD = Exponential recapture
decay rate analysis, JS = Jolly-Serber model, MP = Modified Peterson model, MS = Modified Schnabel model, NR = NOREMARK pro-
gram, P = Petersen model; PMMS = Program Mark, Multi-State model; POP = POPAN open model; S = Schnabel model; TS = Temporal
symmetry model; NA = data or method not provided, or mortality estimate not available from cited reference; Nt = total captures; SE =
standard error of the estimate; CI = 95% confidence interval around estimate(s).
aAbundance and mortality estimates are based on the samples obtained immediately below the JWLD.
bAbundance and mortality estimates are based on samples of Yellow River and Escambia River GS occupying the Cooper Basin holding area
in the Blackwater River.
cAbundance and mortality estimates are composite estimates for all samples obtained over the period of 1986–2007.
dMeylan, 1977; cited in Chapman et al. (1997)
eRecapture and survival probabilities are confounded for the last year of a CJS model, making them unreliable. The 95% CIs are large due
to the greatly uneven ‘N’ for catches and effort over the sampling years.
fNets used varied in mesh bar dimension from 1.9 to 15.2 cm, with nets of 10.2 cm used predominately. For the multistate model mesh size
used is not a factor since individual fish tracked through the analysis may have been captured and recaptured in different size meshes.
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that these two rivers originally supported the largest GS river
populations prior to exploitation. However, the largest GS
commercial landings in the peak year of 1902 were instead
reported from Escambia County, Florida (Alexander, 1905).

Most of this record catch probably came from the Escambia
River and Yellow River GS populations, plus fish using the
Blackwater River holding area (rivers fished were not speci-

fied by Alexander). Additionally, some GS netted in the
Choctawhatchee River and transported to Pensacola may
also have been included (Cason et al., 1985). Nonetheless,

the 1902 ‘Escambia-Blackwater’ Escambia County landings
of 259 171 lb (117 664 kg) exceeded the peak Apalachicola
River catch (1902) by 3.5 times, that of the Mobile River

(1902) by 2.6 times, that of the Suwannee River (1900) by
5.9 times, and that of the Pascagoula River (1902) by 10.7
times. Accordingly, contemporary river population abun-
dances are not a good index of the historical natal river GS

population carrying capacity prior to the depredations of
commercial fisheries and dams. Nor were the largest landings
correlated with the original unimpounded lengths of natal

sturgeon rivers. As per Table 2, maximum river length,
arranged in approximate order of longest to shortest would
be Mobile, Apalachicola, Suwannee, Pascagoula, Escambia,

and Yellow. Even when combined, the lengths of the Escam-
bia and Yellow rivers fall short of the length of the Apala-
chicola River.
However, commercial fisheries landings from Gulf Coast

states must be viewed with some caution. At best, these
uneven and infrequently conducted surveys provide equivocal
evidence of the historical abundance of GS in the various

coastal rivers. Landings of GS from the turn of the 20th cen-
tury GOMEX commercial fisheries were reported only infre-
quently and mainly for Florida, Alabama, and Mississippi.

The source river was sometimes equivocal as well. For exam-
ple, GS fished in the Choctawhatchee River or bay may have
been transported to Pensacola, FL (above), and thus

reported as Escambia County landings. Also, except for first
landings reported for the Ochlockonee River in 1900 (Town-
send, 1901), GS from that river were thereafter transported
to the town of Apalachicola (Florida Outdoors, 1959; Swift

et al., 1977; Fichera, 1986) for shipment to New York and
were probably reported with landings for the Apalachicola
River (or Franklin County).

Turn of the 20th century GS landings during the 1890–
1920 heyday of the fishery were reported only once from
Texas [1897 from the vicinity of Rio Grande River mouth

(Townsend, 1900)], and never from Louisiana. Indeed, the
only commercial GS landings reports for Louisiana have
been small catches (100–1000 lb or 45–454 kg) between
1939–1951 (Anderson and Power, 1946, 1951; Anderson and

Peterson, 1953, 1954; Barkuloo, 1988).

History of the GS commercial fishery and pre-fishery abundance

Prior to the onset of commercial sturgeon fisheries in the
U.S. in the 1880s, sturgeon were rarely fished or utilized for

food. In the early colonial period, sturgeon caught in New
England and Virginia were netted, pickled, and shipped to
England (Wood, 1634; Wharton, 1957). This early trade was

short-lived. Subsequently sturgeon were shunned, considered
unworthy for human consumption (Saffron, 2004) except as
a survival food of last resort (Smith, 1623). Indeed, along the
Atlantic coast, they were considered trash fishes (Meehan,

1893; Cobb, 1900), destructive to shad nets (Hamlen, 1884),
and subject to both purposeful and profligate eradication
(Smith, 1914). This attitude continued until the late 1800s

(Jordan and Evermann, 1905) when a sturgeon fishery was
re-kindled in the northeastern U.S. in response to a German
market for caviar.

In the GOMEX states, sturgeon did not appear in a com-
prehensive report on coastal and inshore fisheries and species
harvested up to 1891 (Collins and Smith, 1893). Indeed, U.S.

Commissioner of Fisheries interest in GS was not apparent
until the report of Brice (1897). In the absence of a directed
fishery, GS abundance data were not available from the
Suwannee River or any other Gulf Coast river prior to 1886.

No commercial landings outside of Florida were reported
until 1902. Beginning with the Tampa Bay 1886–1888 har-
vests (Collins, 1892; Townsend, 1902), sturgeon landings in

GOMEX fisheries were summarized sporadically and incon-
sistently through 1939 in reports of the U.S. Commissioner
of Fisheries. Thereafter, landings were reported in the

USFWS ‘Statistical Digest’ through the 1940s. Subsequently,
annual Florida sturgeon landings were reported through
1985 by the University of Miami Marine Laboratory, Flor-
ida State Board of Conservation, or the National Marine

Fisheries Service. Historical landings for all Gulf Coast states
from 1950 onward can now be accessed via online query
(NMFS, 2011). The initial 1886–1888 Tampa Bay landings

were reported as numbers of fish (Townsend, 1902). There-
after, catches were reported in pounds (round weight), with-
out specifying numbers of fish landed. This makes

determination of historical population abundances difficult.
Nonetheless, numerical abundance for the pre-fishery pop-

ulation can be estimated indirectly, if very approximately,

from weight of annual landings reports, using the mean
weight of fish netted in the early fishery. Fortunately, both
total catch weight and numbers are uniquely available for
the Tampa Bay fishery in 1897, the second year of commer-

cial GS fishing in the GOMEX. Weight of catch was
50 294 lb (22 833 kg) (Collins, 1892), and number of fishes
landed was 1500 (Townsend, 1902), yielding a mean weight

of 33.6 lb (15.2 kg). However, mean weight in the winter net
fishery in Tampa Bay was undoubtedly skewed low since an
estuarine winter feeding aggregation would be biased toward

subadults and smaller adults. Comparative GOMEX marine
aggregations would comprise primarily large adults (Fox
et al., 2002). Adjusting for such bias, the mean weight of
adult GS, the target of the early commercial gill net fishery

(using 8.0 in [20.3 cm] bar mesh nets) (Cook, 1959) can be
hypothesized to have been at least ~50 lb (22.7 kg). Odlund
(1958) stated that GS of 200–300 lb (91–181 kg) were com-

mon in the Suwannee River spring gill net catches in the
early 1900s. The 22.7 kg mean weight estimated for the his-
torical GS fishery compares to the 2012–2013 mean weight

of 18.3 kg (40.3 lb) from USGS scientific sampling in the
Suwannee River after 28–29 years of protection from har-
vest, and a mean weight of 33.4 kg (73.6 lb) from scientific
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sampling in the Pascagoula River 23–28 years after the State
of Mississippi GS harvest ban in 1974 (Ross et al., 2002)
(Table 3). Such recent mean weights 2–3 decades after elimi-
nation of fishing mortality provide perspective on probable

pre-fishery (pre-1880) mean weight. However, ‘fishing down’
of maximum size cannot be accounted for in such a retro-
spective mean weight analysis. Armstrong and Hightower

(2002) provide some insight in that regard, reporting that the
mean weight of the sister-subspecies AS captured in the his-
torical 1901–1907 North Carolina haul seine fishery as 41 kg

(90.3 lb) (Table 3).

River populations – east to west across the species range

Suwannee River population – abundance, mortality, and

trend. The Suwannee River maintains the largest contempo-
rary GS population (Table 1). As with other North Ameri-

can sturgeon, that population was rapidly fished down
between 1897–1917. An exploratory commercial fishing party
was deployed to the Suwannee River in 1895 (Brice, 1897),

with directed net fishing initiated the year thereafter (Cobb,
1898; Townsend, 1900), resulting in the first reported

landings of 9254 lb (4201 kg) in 1897 (Townsend, 1900). The
largest reported landings were 44 400 lb (20 158 kg) in 1900
(Townsend, 1901; Barkuloo, 1988). By 1902, however, GS
were already reported as ‘becoming scarce’ according to the

U.S. Fish Commission (Townsend, 1902; Alexander, 1905).
However, a thriving sturgeon fishery was still in force in
1912, as reported by Odlund (1958). Nonetheless, commercial

landing reports indicate that GS catches declined precipi-
tously over a period of two decades. The last big catch
reported in the early fishery was 40 000 lb (18 160 kg) from

1917 (Barkuloo, 1988). Only 4915 lb (2231 kg) were reported
in 1918 (Radcliffe, 1920, 1921), just 1.4% of the largest
reported Florida catch of 343 291 lb (155 854 kg) in 1902

(Alexander, 1905) [elsewhere reported by Sette (1926) as
348 082 lb (158 029 kg)]. Thereafter, a highly variable har-
vest continued, ranging from 74 to 26 196 kg annually until
Florida implemented a GS harvest ban in 1984, but

<1000 kg annually after 1977 and more than 10 000 kg only
in 1968 (Huff, 1975; Barkuloo, 1988; NMFS, 2011).
The first GS mark-recapture program in the Suwannee

River was undertaken by Archie Carr in 1976–1981
(Carr,1983), resulting in 253 fish tagged and 103 recaptured

Table 3
Mean weight estimates for Suwannee River Gulf Sturgeon from net samples using 4–5 in (10.2–12.7 cm) bar mesh gill nets, 1897 to 2013,
with one comparative mean weight from the Pascagoula River historical fishery, and one from the Atlantic Sturgeon historical U. S. East
Coast fishery

Period
Location &
method

Catch or
sample (N) Mean weight (lb) Mean weight (kg) Source Comment

Gulf Sturgeon
1897 Tampa Bay

estuary gill net
1500 33.6a 15.2a Collins (1892),

Townsend (1902)
Historical GS fishery

1896–1917 Suwannee
River gill net

NA Probably ≫ 33.6a Probably ≫ 15.2a — Historical GS fishery

1972–1973 Suwannee
River gill net

632 38.5b 17.5b Huff (1975) Pre-1984 harvest
ban Florida

1981–1984 Suwannee
River gill net

279 50.5c 22.9 Tatman (1984) Pre-1984 harvest
ban Florida

1986–1995 Suwannee
River gill net

1670 39.7c 18.0 Carr and Rago
unpubl. – cited in
USFWS, GSMFC
and NMFS, 1995

Post-1984 harvest
ban Florida

1986–1997 Suwannee
River gill net

1115 24.7–44.8d

(34.7)e
11.2–20.3d

(15.8) e
Chapman
et al. (1997)

Post-1984 harvest
ban Florida

2006–2007 Suwannee
River gill net

543 60.6b 27.5 USGS database
unpubl.

Post-1984 harvest
ban Florida

2012–2013 Suwannee
River gill net

791 40.3b 18.3 USGS database
unpubl.

Post-1984 harvest
ban Florida

1997–2002 Pascagoula
River gill net

251 73.6 33.4 Ross et al. (2002) Post-1974 harvest
ban Mississippi

Atlantic Sturgeon
1901–1907 North Carolina — 90.3 41.0 Armstrong and

Hightower (2002)
Historical AS fishery

aThe 1897 gill net fishery in the Tampa Bay estuary targeted winter feeding GS, which would have been comprised of juveniles and subadults,
thus probably under-estimating mean weight of the overall Suwannee GS population from which the Tampa Bay sub-group may have been
derived. After 1897 landings were reported in round weight only without number of fish reported such that mean weight could be
determined.
bMean weight determined from total catch weights in Fig. 3 of Huff (1975) and total sample N = 632 during a period when adults were
depleted from the population due to size-selective fishing.
cMean weight determined only from first captures of wild GS, hatchery fish captures excluded.
dRange in mean weights determined for each of 12 sampling years; pooled ‘N’ = 1115.
eMean of 12 annual sample means.
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through 1981. Field notes and data from that study, funded
by the Caribbean Conservation Corporation (CCC) have

apparently been lost. However, those data were used, method
unspecified, to arrive at the first estimate of Suwannee River
GS abundance prior to the 1984 harvest ban. That estimate,

3000–4000 GS (Table 1), was reported by a consultant to
CCC (Hollowell, 1980). The next abundance estimate, using
the Jolly-Seber open model, was performed by Rago (1993)
based on data from scientific mark-recapture sampling in

1987–1992 using 4–5 in (10.2–12.7 cm) bar mesh commercial
gill nets. Rago’s analysis resulted in an estimated, net-vulner-
able (fish >1000 mm TL) population of 2285 � 398 (mean �
SE) (Table 1). A duplicate estimate from the same data was
reported by Carr et al. (1996b) (Table 1). Chapman et al.
(1997) reported a third population estimate of 3152 � 369

from 1986 to 1994 data. The GS population in the unim-
pounded Suwannee River, relatively unaltered by major
human 20th century impacts, apparently responded positively

and rapidly to cessation of commercial fishing. Rago’s (1993)
mean 1990, 1991, and 1992 estimates were each significantly
greater than either the 1988 and 1989 abundance estimates
(Fig. 3). The 1992 estimate (2921) was significantly greater

(P < 0.05) than the 1990 and 1991 estimates (2458–2475).
Rago (1993) also reported a statistically significant increase
in recruits added to the population in 1989–1990 vs 1987–
1988. Continued mark-recapture sampling, 1986–1997,
resulted in an estimated mid–1990s population of 5500–7650
fish (>1000 mm TL) with an annual natural mortality rate of

16–17% (Sulak and Clugston, 1999; Pine et al., 2001). The
most recent estimates from 2007 and 2013 (Randall and
Sulak, USGS unpubl.) range from 8877 to 9743 GS
>1000 mm TL (Table 1) with adults comprising 48% of the

combined 2012–2013 sample, and an annual natural mortal-
ity rate of 11.04% (essentially identical to the 11.0% estimate
of Pine and Martell, 2009a). When GS juveniles (>400 mm

TL) are included in the mark-recapture histories, the 2006
USGS estimate was 14 496 (95% CI = 7745–27 428) with an

annual mortality rate of 11.3% (Table 1). Length frequency
data from the most recent USGS population census in 2013
(Table 1) displays strong year-class modes occurring almost
annually (Fig. 4). Correspondingly, the present population is

comprised of mixed-size, mixed-age fish, regularly and
robustly recruiting to the adult spawning population.
Huff’s (1975) pioneering study of the Suwannee population

in 1972–1973 revealed a total annual mortality rate (com-
bined natural plus fishing mortality) of 42% (Huff, 1975) in
a population selectively depleted of large adults by large-

mesh gill netting. Such a high mortality rate is unsustainable
for sturgeons (Boreman,1997; Pine et al., 2001; Tate and
Allen, 2002), reflecting the highly overfished state of the GS

fishery prior to harvest prohibition in Florida in 1984.

Suwannee River population– historical context and pre-fishery

population size. Historical context: The 394–451 rkm long
Suwannee River is unimpounded. However, a natural barrier

at Big Shoals (rkm 271.5) just upstream of White Springs
(Fig. 5) limits GS passage to periods of exceptionally high
water. The river is considered only moderately impacted by

anthropogenic change. However, between 1830 and 1930 the
primeval North Florida giant conifer forests were completely
logged out (Miller, 1998) and the ecosystem irreversibly
changed. By 1879, the annual harvest of bald cypress (Tax-

odium distichum) and longleaf pine (Pinus palustris) exported
from Florida was 247 million board feet (BF), by 1899 it
was 790 million BF, and in 1909 harvest peaked at 16 billion

BF (Miller, 1998). The Suwannee River riparian conifer-
dominated forest of giant 1000–3000 year-old cypress and
longleaf pine forest (Fig. 6a–c) that was gone by 1930 and

subsequently replaced by a second-growth oak-dominated
mixed hardwood forest (oak, gum, ash, maple, birch). Canals
from the river were dug and elevated rail trams constructed
deep into the floodplain forests to enable complete

Fig. 3. Estimated Suwannee River Gulf Sturgeon population size
(Jolly-Serber open model), 1987–1993, based on Rago (1993). Key:
open bars = population estimate, number of individuals; vertical bars
show �95% SE

Fig. 4. Length frequency distribution in 100 mm TL intervals for
Suwannee River Gulf Sturgeon first captures (excluding recaptures)
sampled by USGS 2013 (USGS-WARC unpubl. database). Apparent
year-class recruitment modes in the population are indicated by con-
fining parabolas with approximate age and spawned year indicated
for each mode. Age scale is based on pectoral fin spine length-at-age
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exploitation of timber. At the same time, early American set-

tlers rapidly and extensively converted the upland watershed
from longleaf pine forest and scrub habitat to row crop and
pasture agriculture, with native swamp habitat and savannah

used for free-range foraging by non-indigenous feral hogs
and bush cattle. The impact of highly altered habitat upon
the low-tannin clear-water Suwannee River was profound.

Colonial naturalist William Bartram on his botanical collec-
tion expedition in 1774 William Bartram (1793) described the
pre-settlement river thus:

“The river Little St. Juan [Suwannee] may, with singular
propriety, be termed the pellucid river. The waters are the
clearest and purest of any river I ever saw, transmitting

distinctly the natural form and appearance of the objects
moving . . . on its silvery bed.”

Conversion to a second-growth oak and mixed hardwood
dominated riparian forest resulted in the contemporary high-
tannin blackwater ecosystem amenable to colonization by
GS, a fish species not observed in the Suwannee River by

Bartram (1793) in summer 1774, but abundantly present
where he had camped and canoed one hundred years later
(Cobb, 1898) and now.

Pre-fishery population size: Analysis of fish stock reduction
in the early fishery can be used to estimate abundance in a
pre-fishery GS population. Accordingly, Pine and Martell
(2009a) estimated the biomass of the original pre-fished

Suwannee River GS stock of the late 1800s as 600 000–
700 000 kg. From this estimated biomass and the USGS
2013 estimated mean weight of 22.7 kg, the pre-1886 GS

population abundance range for the Suwannee River popula-
tion can be estimated as 26 400–30 800 fish >1000 mm TL.

Allowing for substantial under-reporting in the commercial
landings data (with a typical range of 2–3 times the reported
landings) a probable total of 50 000–100 000 GS were

removed from the Suwannee River from 1896 through 1917,
a 22-year period approximating one full 25-year GS genera-
tion span (Sulak and Randall, 2002). That is, the mixed-age

stock of sturgeon that sustained the early Suwannee River
fishery for two decades, until it was exhausted, can be esti-
mated as 50 000–100 000 GS vulnerable to capture in large
mesh gill nets.

Ochlockonee River population – abundance, mortality, and

population trend. Prior to impoundment by the Jackson

Bluff Dam (rkm 105) in 1927, the Ochlockonee River
undoubtedly supported a spawning population of GS. Town-
send (1902) reported that commercial fishing was conducted

on the river in 1898, 1899, and 1900, with reported landings
of 37 100 lb (16 843 kg) in 1900. Commercial fishing in the

Fig. 5. Map of the Suwannee River, showing the known distribution
of the Gulf Sturgeon, including individual historical records (pre-
1986) and total scientific sampling records by location, 1986–2015.
Known spawning grounds are identified with arrows; an additional
suspected spawning ground with an asterisk. Distances from the river
mouth are indicated by rkms for spawning grounds within the
Suwannee River mainstem. Rkm 109, not a spawning site, is labeled
to denote the confluence of the Santa Fe River tributary

Fig. 6. Photographic documentation of the primeval Suwannee River
giant cypress and longleaf pine conifer forest ecosystem, logged out
between 1830–1930: (a) Cypress ‘brake’ (impassable barrier) riparian for-
est along the lower river: Image RC13193: ‘O.M. Anderson in a cypress
forest – Dixie County, Florida. 192-‘ (https://www.floridamemory .com/
items/show/35552, accessed 22 September 2016); (b) 2-m diameter logs
felled in 1916: Image PR05039, ‘Fallen trees ca 1916’ (https://www.flori
damemory.com/items/ show /4442, accessed 22 September 2016); (c)
Three sections of a 203+ ft (62+ m) tall 3000-year old cypress, 16 ft (5 m)
diameter at top cut: Image PR05108, ‘Burton-Swartz Cypress Company:
Perry, Florida. 1926’ (https://www. floridamemory.com/ items/ show/
4484, accessed 22 September 2016); Public record images obtained for
educational use as per Section 257.35(6) of the Florida Statutes from the
online ‘State Archives of Florida, Florida Memory’ website
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Ochlockonee River was again reported for 1902 (Alexan-
der,1905). However, GS landings of 74 120 lb (36 650 kg)
reported for Franklin County, FL, combined those for both
the Apalachicola and the Ochlockonee rivers. Beyond the

impacts of the initial intensive fishery (1898–1902), and sub-
sequent construction of the dam, the population remained
sufficiently resilient to sustain commercial fishing at least

through 1959 (Florida Outdoors, 1959; Swift et al., 1977).
That fishery was conducted from a sturgeon fish camp at
Hitchcock Lake on the lower river (40 rkm from the river

mouth, very probably a GS seasonal holding area), with the
catch being sold to the Taranto Fish Company in Apalachi-
cola (Florida Outdoors, 1959; Swift et al., 1977; Fichera,

1986). The longevity of the post-impoundment fishery
strongly suggests the prior existence of a self-sustaining pop-
ulation. After the end of the commercial fishery, GS contin-
ued to be harvested by angling (using filamentous algae

twisted onto treble hooks as bait) below the Jackson Bluff
Dam (Ingle and Dawson, 1952; Swift et al., 1977; USFWS,
GSMFC and NMFS, 1995) where they have frequently been

sighted (Reynolds, 1993).
In recent decades USFWS and USGS have conducted

infrequent and limited scientific gill net sampling in the

Ochlockonee River (USGS-WARC unpubl. database), tar-
geting the same sites previously used by commercial fisher-
men. Between 1991–2012, 156 unique GS (TL range 620–
2060 mm; bimodal at 800–900 mm and 1200–1600 mm)

(Fig. 7) have been netted and tagged, providing a rough min-
imum estimate of the existing population (Table 1). Docu-
mented summering of adults in substantial numbers suggests

spawning may occur in the Ochlockonee River. The length
frequency distribution of first captures (excluding recaptures)
suggests a mixed age-class, unimodal population (Fig. 7)

including large adults (>1800 mm TL) as potential resident
spawners. Alternately, acoustic telemetry suggests that GS
occupying the Ochlockonee River may simply use that river

as seasonal resting habitat, migrating to the Suwannee River
to spawn. For example, five adult GS tagged by USFWS in

the Ochlockonee River in 2011 were detected entering the
Suwannee River the following spring, and proceeding directly
to spawning grounds above rkm 200 past a series of acoustic
receivers (USGS-WARC unpubl. data).

Both USFWS and USGS have conducted very preliminary
acoustic telemetry efforts to monitor movements of adults in
the Ochlockonee River to potentially pinpoint holding areas

(resting areas where GS congregate from spring to autumn,
detailed below) and upriver migrations suggestive of spawn-
ing behavior. However, telemetry has not yet detected move-

ments to the base of the dam, where substrate is suitable for
spawning (Parauka and Giorgianni, 2002). Thus, without
recent scientific documentation of spawning in the Ochlock-

onee River, that river was not included in the U.S. Endan-
gered Species Act (ESA) critical habitat designation for the
GS (USFWS and NOAA, 2003; NOAA, 2004). The current
small, poorly-studied Ochlockonee River population

(Table 1) represents either a seasonal (summer holding and
winter feeding) population derived from the genetically clo-
sely-related Apalachicola and Suwannee rivers populations,

or a small functional spawning population. The capture of
juveniles in a size range (700–1000 mm TL) that do not nor-
mally enter fully marine GOMEX waters (Fleming, 2013)

reinforces the later interpretation. Moreover, several GS have
been recaptured in the Ochlockonee River multiple times
over intervals spanning 1–4 years, indicating long-term resi-
dence and river fidelity. On the other hand, a small number

of fish originally tagged with a Passive Integrated Transpon-
der (PIT) tag or acoustically tagged in either the Apalachi-
cola River or Suwannee River have been recaptured in the

Ochlockonee River (F. Parauka, USFWS, pers. comm.;
USGS-WARC, unpubl. mark-recapture database2 ), indicat-
ing some in-migration from other river populations.

The reach of river available as YOY developmental habi-
tat and summer holding habitat below the Jackson Bluff
Dam at rkm 105 is nearly equivalent to that available below

the known spawning grounds in the Yellow River (rkm 91–
134), and is substantially longer than the 68–78 rkm unim-
pounded reach below the sills in the Pearl River. The size of
the present Ochlockonee River GS population may be con-

strained both by limited upriver habitat for spawning and
limited estuarine habitat available to support winter feeding
by juveniles in Ochlockonee Bay, a bay much smaller in area

than either Pensacola-Escambia Bay, Choctawhatchee Bay,
or Apalachicola Bay (but larger than Suwannee Sound)
(Table 2).

Apalachicola River population – abundance, mortality, and

population trend. Historically, the Apalachicola River sup-
ported a large and economically important sturgeon fishery

(Huff, 1975; Wooley and Crateau, 1985). GS fishing in the
Apalachicola River system began in 1899, with large landings
reported for 1900 (84 000 lb or 38 136 kg) (Townsend, 1902)

and 1902 (74 120 or 33 650 kg) (Alexander, 1905). However,
the fishery declined rapidly and dramatically. Annual catches
reported from 1928 (Fiedler, 1930) onward were under

10 000 lb (4540 kg) per year, dwindling steadily to a final
report of 149 lb (68 kg) in 1954 (Luce and Greer, 1955).
Commercial fishing continued at a low level through the late

Fig. 7. Length frequency distribution in 100 mm TL intervals for
the 1991–2012 Gulf Sturgeon gill net captures in the Ochlockonee
River (USFWS unpubl. database, F. Parauka), confirming the pres-
ence of adults (>1350 mm TL) as potential spawners
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1950s, finally ending in the 1970s when the fishery became
unprofitable (Barkuloo, 1988). Recreational fishing using
snatch-hooks (snagging or snitching) or algae-baited catfish
rigs in late summer became popular just below the Jim Woo-

druff Lock and Dam (JWLD) (Fig. 8) during the late 19500s
to 1960’s (Burgess, 1963; Swift et al., 1977; Reynolds, 1993),
continuing near Blountstown as well until at least 1975 (Tal-

lahassee Democrat, 1963; Carr, 1978, 1983). However,
Barkuloo (1988) reported that snatch-hook fishing continued
into the 1980s, serving as a source of study material for

Wooley and Crateau (1982). Sport fishing for GS in Florida
ended with the 1984 harvest ban, although a low level of ille-
gal poaching by snatch-hook and ‘rubbing’ probably contin-

ued for some years thereafter. Rubbing is another form of
snag-hooking formerly used in Gulf Coast rivers. A series of
large hooks are driven into a water-logged log anchored to
the river bottom (Reynolds, 1993). Sturgeon with a habit of

rubbing against hard objects to relieve skin irritations get
snagged on the protruding hooks.
Construction of the JWLD at rkm 172 (Fig. 8) in 1957

denied GS upstream access to 78% of the originally available
habitat in the Flint and Chattahoochee rivers above the dam
(Carr, 1978; USFWS, GSMFC and NMFS, 1995). Before

river impoundment, GS were known to ascend an additional
320 rkm (Smith, 1917), as documented by historical capture
records (Fig. 8). Currently, GS spawn in three locations from
immediately below to a few rkm below the dam, areas which

probably served as ancestral spawning grounds. The entire
riverine phase of GS life cycle, including spawning and YOY
development, must now be completed within the unim-

pounded 172 rkm reach of the Apalachicola River. This
reach, from the river mouth to the dam, has been substan-
tially modified to facilitate commercial shipping (Odenkirk

et al., 1988). Streambed modifications included periodic
dredging of the 30.5 m wide navigation channel to a uniform

depth of 2.7 m along the entire Apalachicola River until
halted by the State of Florida in 20053 (as well as the lower
reaches of the Chattahoochee and Flint rivers above the
dam) (Bass and Cox, 1985; Wakeford, 2001). Habitat modifi-

cations included removal of rock shoals (potential GS
spawning grounds), filling in of deep holes (potential GS sea-
sonal holding/resting areas), and elimination of many low-

velocity oxbows (potential YOY feeding habitat). Habitat
and water quality has been further degraded by agriculture
and silviculture impacts in the Chattahoochee and Flint

watersheds. Erosion of the steep river banks has resulted in
elevated turbidity, suspended solids, and bacteria (Wakeford,
2001). In recent decades, fertilizer-intensive, water-intensive

center-point agriculture in the watershed above JWLD has
resulted in reduced flow accompanied by elevated pollutant,
nitrate, and suspended sediment levels. A growing GS habi-
tat threat is elevated salinization of winter feeding habitat in

the Apalachicola Bay estuary due to the combined effects of
freshwater withdrawals and reservoir holdbacks, exacerbated
by encroaching marine waters due to sea-level rise. These

synergistic processes have progressively raised the salinity of
Apalachicola Bay (R. Lehnert, FWRI, pers. comm., 2007),
constricting the winter feeding habitat of GS juveniles which

avoid high salinity habitats.
In the Apalachicola River, impacts of GS overfishing at

the turn of the 20th century preceded impacts from dam con-
struction by several decades. The GS population declined

precipitously in the fishery as documented in the U.S. Com-
missioner of Fisheries report series. This decline in abun-
dance precisely paralleled that in the Suwannee River GS

population at the same time, with a simultaneous Apalachi-
cola landings high point of 84 000 lb (38 136 kg) reported in
1900 (Townsend, 1902), and low point of 1215 lb (552 kg) in

1918 (Radcliffe, 1920). Thereafter, catches were reported
irregularly until construction of JWLD, fluctuating between
2087 and 12 121 lb (947–5503 kg) annually.

The Apalachicola River currently sustains a GS population
that is probably the fourth most abundant for the species. A
series of abundance estimates from closed models, 1983–2003,
yielded a range of 19–350 fish, with an upper confidence limit

of 1010 (Table 1). More recently, an age-structured model
yielded a 2003–2005 population estimate of 500–1000 GS
(Pine and Martell, 2009a) (Table 1). The latest closed-popula-

tion estimate (A. Kaeser, USFWS, pers. comm., 2016) from
mark-recapture data is 503 (95% CI = 450–570) juveniles
<900 mm TL, plus 785 (95% CI = 631–1037) subadults and

adults >900 mm TL Analysis of mDNA genetic diversity
among GS eggs collected in 2008 from Apalachicola River
spawning grounds suggest that population size is probably
greater than estimated by mark-recapture results (Saarinen

et al., 2011). All Apalachicola population estimates to date
are constrained by the use of closed models, generally inap-
propriate to an unconfined anadromous species. Moreover,

the most recent population modeling exercise (Pine and Mar-
tell, 2009a) assumed an unrealistically low 5–7% mortality
rate, which also better fits a closed population with low

within-river, within-season mortality. The mortality rates of
21–33% determined by Zehfuss et al. (1999) appears to be a
much better fit to a population in which population size

Fig. 8. Map of the Apalachicola River, showing the known distribu-
tion of the Gulf Sturgeon, including individual historical records
(pre-1993) and total scientific sampling records by location, 1978–
2008. Dams are indicated by bars across the river. Spawning grounds
are identified with arrows. Distances from the river mouth are indi-
cated by rkms for spawning grounds
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appears to have been static over several decades. Mark-recap-
ture data in the USGS-WARC database for the Apalachicola
River population indicates an annual mortality rate of 37.5%
(Table 1). These higher mortality rates match up well with the

abnormally truncated distribution curve (Fig. 9a), displayed
for Apalachicola population data from 1997 to 2006 (F. Para-
uka, USFWS, pers. comm.). Although early juveniles were

well represented over this 12-year period, subadults were
notably under-represented, suggesting disproportionately high
size-selective mortality among large juveniles and small adults.

The pattern of under-representation after fish have entered
the phase of full marine anadromy is also evident as a deep
valley in the length frequency distribution of 2006 first cap-

tures (Fig. 9b). Currently, the trajectory of the Apalachicola
River population remains equivocal (Flowers, 2008; Flowers
et al., 2009; Pine and Martell, 2009a). However, two of the
most recent estimates from 2006 and 2014 are similar. Sam-

pling in 2006 yielded 216 individuals primarily from the
Brothers River holding area (F. Parauka, USFWS, pers.

comm.) (Table 1), with a within-year, within-river recapture
rate of 28%. That would indicate an estimated population
~3.6 times larger, or 771 net-vulnerable fish (>1000 mm TL),
closely matching the 2014 closed model estimate of 785 GS

>900 mm FL (Table 1). Application of open population mod-
els to the existing mark-recapture data, with no assumptions
regarding mortality rates, would serve to test these recent

population estimates. Good proportional representation of
small juveniles (<800 mm TL) across 1977–2006 samples
(Fig. 9a) suggests frequent spawning success and juvenile sur-

vival success. Thus, the population seems poised to rebound if
mortality among subadults could be reduced.
In the earliest (1981–1984) comprehensive study of the

Apalachicola River GS population, Wooley and Crateau
(1985) had identified the Brothers River, 23–31 rkm
upstream of the Apalachicola River mouth with a mean
depth of 11 m, as an important holding area. Others include

a deep hole at Ocheese Bluffs (rkm 148) and the deep area
immediately below the Jim Woodruff Lock and Dam (rkm
171). Gill nets set in the deep hole below the dam in 1982–
1983 captured 228 GS (Wooley and Crateau, 1985). Use of
the ‘migration resting area’ deep hole at Ocheese Bluffs, and
of the Brothers River ‘deep fall migration staging area’ was

identified from the detected relocations of 17 GS fitted with
radio tags (Wooley and Crateau, 1985). The Brothers River
area was targeted in the early GS commercial fishery
(Fichera, 1986).

Choctawhatchee River population – abundance, mortality, and

population trend. No GS landings were ever reported in the

U.S. Commissioner of Fisheries report series from the Choc-
tawhatchee River. Nonetheless, commercial sturgeon fishing
certainly took place (Cason et al., 1985). Indeed, Swift et al.

(1977) reported that large catches were taken from this river.
Shell middens and historical narratives (Cason et al., 1985)
provide evidence that Choctawhatchee Bay had been saline at

some period in the past. However, during the early part of the
20th century, prior to creation (with human assistance) of a
new inlet, Destin Pass, during the 1929 flood, Choctawhatchee
Bay was essentially a freshwater body of water isolated from

direct communication with the GOMEX (Cason et al., 1985).
Choctawhatchee River outflow reached the Gulf only through
Santa Rosa Sound and out via Pensacola Pass. Alternating

episodes of semi-isolation from the GOMEX, then more
direct reconnection of Choctawhatchee Bay to the GOMEX,
seem likely as the barrier islands were repeatedly re-shaped.

This alternation of GOMEX access probably influenced the
historical presence and abundance of GS in the river during
any given time interval. Currently, low to mid-salinity near-
shore areas of the bay represent the preferred winter feeding

habitat for juvenile and adult males in the Choctawhatchee
River GS population (Parauka et al., 2001; Fox et al., 2002).
Thus, fluctuating salinity regimes may influence GS popula-

tion trajectory with respect to expansion or contraction of the
available shallow low to mid-salinity estuarine feeding habitat
required by juveniles, and apparently also preferred by adult

males in this population.
Abundance estimates for the Choctawhatchee River GS

population from 1999 through 2007 range from 2000 to 3000

Fig. 9. Length frequency distribution plots in 100 mm TL intervals
for the Apalachicola River Gulf Sturgeon population (USFWS
unpubl. database, F. Parauka): (a) All gill net first capture data,
1997–2006, as percent of all first captures (recaptures excluded) for
all sampling years, displaying abnormal truncation in the 800–
1700 mm TL range in relation to TL at transition to full marine
anadromy, and at onset of sexual maturity; (b) Length frequency dis-
tribution plot for 2006 first captures displaying abnormal gap in the
young adult TL range of 1300–1600 mm TL
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individuals >610 mm TL (USFWS, 2001, 2002, 2009)
(Table 1). This currently represents the second largest GS
population. While no trend over time is apparent from the
available abundance estimates, population size appears to

either be stable or increasing. Annual natural mortality has
been estimated at 16% (USFWS, 2002), which is at the
upper limit necessary to maintain stability in sturgeon popu-

lation size (Boreman, 1997; Morrow et al., 1998; Pine et al.,
2001). The Choctawhatchee River mainstem is unimpounded,
although there is a dam on the Pea River tributary, 191 rkm

from the river mouth (Fig. 10). Thus, it appears that riverine
habitat availability does not impede population increase.
Length frequency distribution from one large sampling year,

2007 (F. Parauka, USFWS, unpubl. data, 2011), displays a
population containing at least four year-class modes
(Fig. 11), indicating periodic reproduction and successful
recruitment. The focus of recent research has been on defin-

ing movements and habitat use in the river and within the
Choctawhatchee Bay estuary (Fox et al., 2000, 2002; Fox,
2001).

Yellow River (including Blackwater River) population – abun-

dance, mortality, and population trend. Barkuloo (1988)
reported that GS were occasionally harvested commercially
in the Yellow River prior to the 1984 Florida harvest ban.

While commercial landings have otherwise never been
reported from this river, harvested GS may have been com-
bined with those reported for the Escambia River (Alexan-

der, 1905), due to close geographic proximity of both river
mouths (Fig. 12). Reynolds (1993) reported that sightings of
GS jumping in several locations in the lower Yellow River

were common in the 1980–1990s. The eroded wooden pilings
of a fishing weir remain as a testament to presumed but
undocumented GS commercial harvest at rkm 54 in the
lower river (Figs 12 and 13). The effort required to construct

and maintain such a permanent post weir suggest that sub-
stantial numbers of GS were harvested over a span of several

years. Anecdotal reports to USGS fisheries biologists from
several local residents confirm that a local-market meat fish-
ery was conducted in the Yellow River in the 1950s and
1960s.

The USFWS conducted mark-recapture GS sampling in
the Yellow River from 1993 to 2005 (USFWS, 1994a,b,
1998, 2002, 2004, 2005, 2006) and from 2009 to 2012 (W.

Tate, USFWS, pers. comm.). The USGS conducted sampling
in 2001–2003 (Berg, 2004; Berg et al., 2007) to estimate pop-
ulation abundance. Berg et al. (2007) reported length

Fig. 10. Map of the Choctawhatchee River system, showing the
known distribution of the Gulf Sturgeon, individual historical
records (pre-1993) and total scientific sampling records by location,
1977–2008. The Elba Dam is located at rkm 239 on the Pea River,
just off the map. Known spawning grounds are identified with
arrows

Fig. 11. Length frequency distribution in 100 mm TL intervals for
Choctawhatchee River 2007 Gulf Sturgeon first captures (recaptures
excluded) sampled by USFWS (USFWS unpubl. database). Appar-
ent over-representation of juveniles (600–900 mm TL) is due to rou-
tine use of gill nets with mesh as small as 2.5 in bar (6.4 cm bar)

Fig. 12. Map of the Yellow, Blackwater, and Escambia rivers, show-
ing the known distribution of the Gulf Sturgeon, including individual
historical records (pre-1993) and total scientific sampling records by
location, through 2010. Known spawning grounds on the Yellow
and Escambia rivers are identified with arrows. The ‘Point A’ Dam
is located at rkm 222 on the Conecuh River near Andalusia, AL
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frequency distributions for 2001–2003 samples of GS
>880 mm FL. Each annual plot displays a mixed-size,
mixed-age sample, dominated however by well-separated
recruitment modes (Fig. 14). Abundance across three sam-

pling years was estimated at 500–911 individuals (95%
CI = 378–1550) (Table 1) with dominant modes at 1300–
1500 mm and 1650–1800 mm FL, including abundant juve-

niles. Annual natural mortality was estimated at 11.9% (Berg
et al., 2007), a rate comparable the 11.0–12.9% rates recently
determined for the Suwannee River (Table 1). Population

metrics reported in Berg et al. (2007) indicate a self-sustain-
ing spawning population with periodically successful year-
classes, and a very high proportion of adults (78.8% in net

samples) (USGS-WARC unpubl. database). The Yellow
River sustains the third most abundant GS population across
the species range (Table 1).

Escambia River population – abundance, mortality, and popu-

lation trend. Alexander (1905) reported the largest single-
river GS catch ever (above) from the Escambia County, FL,
in 1901, and refers to the Escambia Bay in text. Thus, land-

ings recorded in Pensacola probably included GS from the

Escambia, Yellow, and Blackwater rivers, and possibly from
the Choctawhatchee River). Subsequent landings reports
were sporadic, but indicate that a small GS fishery continued
(e.g. 3604 lb, or 1636 kg, in 1918) (Radcliffe, 1921) beyond

the early commercial fishery heyday (last report: Greer and
Cohen, 1953). The apparent pre-fishery abundance of GS in
the Escambia Bay system seems surprising, given an Escam-

bia River watershed of modest dimensions, less than half the
size of the Suwannee River watershed for Escambia River
alone (only slightly larger if combined with the Yellow River

watershed), one-fifth the size of the Apalachicola River
watershed, and one-tenth the size of the Mobile River water-
shed (Table 2). This puzzling situation illustrates the current

lack of understanding of what factors actually determine GS
population carrying capacity in any given river. Current
models are inadequate in relating GS carrying capacity to
length of the unimpounded lowermost reach of a natal river

(e.g., Ahrens and Pine, 2014). Nor would watershed area
serve as a substitute metric in this regard.
Based on USFWS sampling in 2003–2006, Escambia River

GS population abundance was estimated (USFWS, 2004,
2008) as 451–573 individuals (95% CI = 83–1003) (Table 1).
The most recent estimate from 2015 is within the same range

(373 GS >900 mm TL, 95% CI = 243–548) (Table 1). This is
<2.0% of the late 19th century pre-fishery GS population of
5000–10 000 based on the total weight of reported Escambia
Bay 1902 landings (probably combined Escambia, Blackwa-

ter, and Yellow rivers landings), divided by a hypothesized
pre-fishery mean weight of 22.7 kg (above). A small commer-
cial fishery still existed on the Escambia River until the 1984

Florida harvest ban. Landings of 259 kg were reported in
1982 (NMFS, 2011), suggesting a severely depleted popula-
tion. Reynolds (1993) reported that GS sightings in the lower

Escambia River were common in the 1960s, but rare there-
after. Estimates available for 2003–2015 (Table 1) reveal no
trend in either increase or decrease. No open model mortality

rate has yet been estimated. The 2015 within-river, within-
summer closed model annual natural mortality rate estimate
of 0.03% (Table 1) simply confirms that most mortality
takes place in saline habitats during the winter feeding

period.
Population recovery in the Escambia/Conecuh River sys-

tem may also have been impacted by the ‘Point A’ Dam at

rkm 222 on the Conecuh River in Alabama (Fig. 12), which
may limit access to ancestral upriver spawning and YOY
nursery habitat. Telemetry relocations have documented GS

movements upstream as far as rkm 204, and into the Sepulga
River, a major tributary of the Escambia system (Fig. 12).
Urbanization and industrialization of Escambia-Blackwater-
Pensacola Bay may impact the extent and quality of winter

estuarine feeding habitat available to juvenile GS. Based on
reports of large number of sturgeon carcasses (F. Parauka,
USFWS, pers. comm., 2005), the population may also be

periodically depleted by stochastic mortality from hypoxia in
the Escambia River, e.g., following Hurricane Ivan in 2004.
The length frequency distribution of the Escambia GS

from USFWS, 2002–2003 samples displays two dominant
adult modes at 1600–1800 mm TL and 2000–2100 mm TL
(Fig. 15) within a mixed-age adult (>1350–1500 mm TL)

Fig. 13. Abandoned remains of a wooden post fish weir at rkm 54
on the lower Yellow River, Florida, evidence that a substantial
undocumented Gulf Sturgeon fishery existed historically in this river
(USGS-WARC photograph)

Fig. 14. Length frequency distribution in 50 mm FL intervals for
Yellow River 2002 Gulf Sturgeon captures (recaptures included)
(from Berg, 2004, Fig. 11, with permission), displaying at least three
distinct modes, evidence of infrequent recruitment
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spawning population. Furthermore, good representation of
juveniles in the distribution documents spawning success in
several years prior to 2002–2003. It appears that the popula-
tion was on a promising trajectory for natural increase prior

to Hurricane Ivan. Prior to the 1980s, as in the adjacent Yel-
low River basin (Wakeford, 2001), sedimentation, agricul-
tural runoff, non-point-source pollutants, and gravel mining

may have seriously affected water quality and benthic habitat
in the Escambia River basin (Livingston et al., 1974;
USEPA, 1975; Hand et al., 1996), potentially resulting in a

decline in fisheries (Wakeford, 2001). Despite water quality
improvement in the 1980s and 1990s (FDEP, 1998a), GS
mass mortalities may still periodically result from riverine

and estuarine hypoxia following major stochastic anthro-
pogenic or weather events. Thus, hypoxia during flooding
from Hurricane Ivan in 2004 may have very negatively
impacted GS population recovery. Anecdotal reports follow-

ing the storm suggest high mortality that was differentially
selective for large adults (F. Parauka, USFWS, pers. comm.).

Pascagoula River population – abundance, mortality, and pop-

ulation trend. Historically, the Pascagoula River appears to
have sustained a large GS population, based on GS commer-
cial landings of 24 100 lb (10 930 kg) in 1902 (Alexander,
1905). However, after the range-wide species demise in the

turn-of-the century commercial fishery, only small and infre-
quent catches were reported from the Pascagoula River until
Mississippi closed the fishery in 1974. Reported commercial

landings are limited to those from 1930, 1950 and 1952,
ranging from 73 to 3300 lb (33–1498 kg) (Fiedler, 1933;
NMFS, 2011). In the earliest report on GS in Mississippi riv-

ers, Cook (1959) observed that captures were rare and infer-
quent, suggesting chance occurrence, with ‘no orderly
migration’. The first scientific survey for GS in the Pasca-
goula River in June 1987 (Miranda and Jackson, 1987) sug-

gested a seriously depleted population. Only one GS was
captured from 30 nights (~600 net-hours) of gill net sampling

in three locations chosen based on information from com-
mercial fishermen and state fishery biologists. Subsequently,
Murphy and Skaines (1994) captured only seven juveniles
and subadults (464–1118 mm FL) in 37 475 net-ft-hr of gill

net sampling at the river mouth in April and May 1993. A
repeat effort conducted by the USFWS in January to June
1994 yielded another juvenile (620 mm FL) from 240 net-hr

of sampling. The USFWS collected nine GS (three juveniles,
five subadults, one adult, FL range 767–1308 mm, including
one 1993 tag recapture) in the Pascagoula River (junction of

Black Creek and Pascagoula River) during a 2-days (60 net-
hr) in July 1995. Subsequently, the MMNS initiated a multi-
year GS research program in 1997. In the initial sampling

year Slack and Ross (1998) reported the first evidence of
adults in the contemporary population, capturing them on or
near upriver spawning grounds. Four GS (1390–1650 mm
TL) were captured in a gravel pit area in the Bouie River

tributary (250 rkm from the Pascagoula River mouth)
(Fig. 16) in April 1997. One net mortality was a male with
testes in spawning condition. In spring 1998, 155 700 net-ft-

hr of gill net sampling in the river mouth returned no GS,
while 77 740 net-ft-hr resulted in capture of seven adults
(1300–1730 mm FL) from the Bouie River site. An addi-

tional 23 subadults and adults (1160–2040 mm FL) were cap-
tured from holding areas (Heise et al., 2004) in Big Black
Creek, the lowermost reach of Black Creek, and in the lower
Pascagoula River (Fig. 16).

The most recent estimates for the Pascagoula River GS
population, prior to Hurricanes Katrina and Rita in 2005,
were accomplished by Ross et al. (2001a) and Heise et al.

(2002). Abundance estimates for 1997–2002 ranged from 162
to 234; 95% CI ranged from 34 to 429 (Table 1). Major
stochastic mortality appeared to accompany hypoxic condi-

tions in the Pascagoula River resulting from Hurricane
Katrina in 2005 (Havrylkoff, 2010). Numerous sturgeon mor-
talities were observed in both Louisiana and Mississippi in

Fig. 15. Length frequency distribution in 100 mm TL intervals for
Escambia River 2002–2003 Gulf Sturgeon first captures (recaptures
excluded) sampled by USFWS (USFWS unpubl. database, F. Para-
uka)

Fig. 16. Map of the Pascagoula River system, showing the known
distribution of the Gulf Sturgeon, including individual historical
records (pre-1993) and total scientific sampling records by location,
1977–2008. Known Bouie River spawning ground at rkm 250 is iden-
tified with an arrow
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the wake of that hurricane (Peterson et al., 2008). Scientific
sampling in 1997–2003 totaled 281 captures of 201 unique
individuals, with a mean of 45 captures per year (Ross et al.,
2004). After the two 2005 hurricanes, 2008–2009 combined

MMNS and Gulf Coast Marine Laboratory (GRCL) scien-
tific sampling yielded a mean of <4 individuals per year. In
2008, 85 259 net-ft-hr of gill net sampling in the lower river

yielded only one GS. In 2009, 81 947 net-m-hr of sampling
further upriver yielded six GS (810–1960 mm TL) (Havrylk-
off, 2010). Prior to the 2005 hurricanes, captures from 2000

to 2003 suggested a population skewed toward adults (bi-
modal at 1700 and 2000 mm TL) (Fig. 17). Post-hurricanes
captures from 2008 to 2009 did not alter this pattern. The

2000–2003 length frequency distribution is biased toward
>900 mm TL GS due to the net mesh size employed.
Nonetheless, juveniles and subadults (800–1350 mm TL) still
appear underrepresented in the Pascagoula River population,

displaying a somewhat different pattern than for the Apala-
chicola River (Fig. 9) and Pearl River populations (Fig. 18).
In those comparative population samples, from a range of

net mesh sizes, juveniles and adults are well represented, but
subadults are disproportionately underrepresented.
Despite hurricane depredations, and despite a limited rate

of recruitment from a depleted population, prospects for GS
recovery remain good since habitat quality is very good for
all life history stages in the Pascagoula River. The watershed
(Fig. 16) is comparable in area to that of the Suwannee

River, with a 430 rkm long mainstem, and five major tribu-
taries (Table 2). The river remains unimpounded (Dynesius
and Nilsson, 1994) and only moderately impacted by late

19th century to present anthropogenic alterations. However,
by 1930 the ancient bald cypress and longleaf pine lowland
and riparian forest typical of Gulf Coast rivers was com-

pletely logged out, probably permanently altering the riverine
ecosystem. Currently, much of the riparian habitat along the
lower Pascagoula River (south of latitude 31°N) is bottom-

land forest and swamp cooperatively conserved by The Nat-
ure Conservancy and the Mississippi Department of Wildlife,
Fisheries, and Parks (MDWFP) (Schueler, 1980). Thus,

habitat in present-day lower Pascagoula River watershed
remains relatively immune to human disturbance.
Three major Pascagoula River tributaries are extensively

utilized by GS for staging, holding, summering, or spawning
(Dugo et al., 2004; Heise et al., 2004). GS occur as far
upstream at rkm 387 in the Chickasawhay River (Fig. 16)

(Ross et al., 2002; Heise, 2003). Spawning has been docu-
mented by egg collections (Table 4) at rkm 250 in the Bouie
River (Fig. 16) (Slack et al., 1999; Heise et al., 2004) where
adult GS were captured every spring, 1997–2003 (Ross et al.,

2004). Spawning is also suspected to occur in the Chicka-
sawhay River (Dugo et al., 2004; Heise, 2003).

Pearl River population – abundance, mortality, and population

trend. There is no record of a late 1800s to early 1900s GS
commercial fishery on the Pearl River. It was not until the

1940s through early 1950s that commercial landings were
subsequently reported (Anderson and Power, 1949; Anderson
and Peterson, 1953; NMFS, 2011), ranging from 100 lb

(45 kg) in 1945 to 1000 lb (454 kg) in 1950. However, an
artisanal GS fishery has undoubtedly been continuously con-
ducted in the Pearl River. Reynolds (1993) provides numer-
ous reports of incidental GS captures in trawls, river hoop

nets, and by angling. Additionally, GS were frequently taken
as bycatch in the commercial shrimp trawl fishery in Lake
Pontchartrain. Bycatch is probable as well in entanglement

gill nets, which are still legal in Louisiana. Morrow et al.
(1998) and Tate and Allen (2002) have suggested that
bycatch in the commercial shrimp fishery is a major contrib-

utor to total mortality in the Pearl River GS population.
Reporting of such bycatch appears to have been stymied by
legal penalties accompanying the GS harvest ban imposed by
Louisiana in 1990, and by the federal ESA listing in October

1991.
The presence of early juveniles among scientific samples

over the past three decades demonstrates that the river still

supports a spawning population (Miranda and Jackson,
1987; Morrow et al., 1996, 1998; Rogillio et al., 2001, 2007),

Fig. 17. Length frequency distribution in 100 mm TL intervals for
Pascagoula River Gulf Sturgeon first captures (recaptures excluded)
sampled in 2000–2003 (data from W. T. Slack, Mississippi Museum
of Natural Science, pers. comm., 2010)

Fig. 18. Length frequency distribution in 100 mm TL intervals for
Pearl River first captures (recaptures excluded) sampled in 2000–
2007 [data from Louisiana Department of Wildlife and Fisheries
(LDWF), H. Rogillio and W. T. Ruth, LDWF, pers. comm.]
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although spawning grounds remain undiscovered. The Pearl
River sustains a small reproductive population of GS adults
(Table 1). Gill-net samples from 1992 to 1996 suggest a pop-
ulation dominated by juveniles of age 2–5, 780 mm mean

FL, and 4300 g mean weight (Morrow et al., 1998), com-
pared to 1967–1969 samples (mean FL = 1140 mm and mean
weight = 11 200 g) (Davis et al., 1970; reported in Morrow

et al. (1998). However, it is now known that the areas sam-
pled in 1992–1996 are areas frequented by juveniles, while
those sampled in 1967–1969 are subadult and adult holding

areas (W. T. Ruth, LDWF, pers. comm.). More recently,
length frequency data for 2000–2007 first captures (LDWF,
unpubl. data) suggest a promising population trajectory

(Fig. 18). Thus, large subadults and adults are well repre-
sented across a broad range of 1100–1800 mm TL, with
modes in the juvenile range (<900 mm TL) displaying evi-
dence of frequent recruitment. The Pearl River plot of GS

first captures is similar to the corresponding Apalachicola
River plot. In both, the component of the population that
appears underrepresented is comprised of late juvenile

through early subadult stages. Those life history stages
would be particularly vulnerable to mortality as bycatch in
the estuarine shrimp trawl fishery.

Population recovery appears to have been retarded not
only by fishery bycatch mortality (Morrow et al., 1998; Tate
and Allen (2002), but by loss of access to upriver habitat
above two low-head sills at rkms 78 (Pearl River) and 80

(Bogue Chitto River, 17 rkm upstream of the conjunction
with the Pearl River) (Fig. 19) constructed in 1956 as part of
the West Pearl River Navigation Canal project. The Bogue

Chitto sill bars upstream migration during low water condi-
tions prevailing for >200 day year�1 (Kirk et al., 1998).
Occasional records from above the two sills indicate that GS

do surmount these barriers during high water (W. T. Slack,

USACE, pers. comm.). A further obstacle to upstream
migration and habitat access is the impassable Ross Barnett
Dam at rkm 486. Prior to its construction at in the 1960s,
there were records of GS from the vicinity of the dam and

reservoir site and further upstream (Fig. 19, Table 5). In
addition to loss of upriver habitat access, the population has
also been periodically impacted by stochastic mass mortality,

e.g., hypoxia following Hurricanes Katrina and Rita in 2005,
and toxicity following from the August 2011 Bogalusa, LA,
pulp mill effluent spill (Reuters, 2011). Morrow et al. (1998)

additionally identified habitat degradation and eutrophica-
tion of Lake Pontchartrain as potentially pertinent to the
status of the Pearl River GS population. Given the current

small population size, and a correspondingly small mark-
recapture database, the model of Morrow et al. (1999) was
unable to determine if the population was either declining or
increasing.

Extirpated historical populations and problematic popula-

tions. Tampa Bay: A three-year winter GS commercial

fishery conducted between 1887–1889 (Townsend, 1902)
apparently extirpated the species from Tampa Bay. In middle
1900s there were occasional small GS catches from the area

between the Suwannee River and Tampa Bay (e.g., Greer
and Cohen, 1953, 1954). Since the 1960s, there have been
sporadic GS observations or reported mortalities in the
Tampa Bay area (Reynolds, 1993; Wakeford, 2001; St.

Petersburg Times, 19 March 2002). Most recently, USGS
acoustically-tagged GS from the Suwannee and Ochlockonee
rivers have been detected in an acoustic array in the

GOMEX off the mouth of Tampa Bay [(S. Barbieri, Florida
Wildlife Research Institute (FWRI), pers. comm., 2011,
2013)].

The Tampa Bay population was probably a winter migra-
tory feeding aggregation derived from the Suwannee River
population. If any of the rivers emptying into Tampa Bay

(Hillsborough, Manatee, Little Manatee, and Alafia rivers)
had been a GS spawning river, the fishery would have been
conducted instead in spring to target fish during the spawn-
ing run. Moreover, it should have taken many years to fish

down a natal river population. Historically, none of the riv-
ers feeding Tampa Bay appears to have the appropriate com-
bination of characteristics (sufficient river length, a

hydroperiod yielding high spring flow, sufficient headwaters
gradient and gravel substrate for spawning) typical of a GS
spawning river (Table 2). In particular, the West Central

Florida hydroperiod (60% of an annual precipitation of 55
in or 140 cm coming in June-September, with lowest precipi-
tation in January to May) is out of synchrony with GS
spring spawning requirements for high flow over upriver

gravel beds. The best candidate as a historical GS natal river
would have been the 95 rkm long Hillsborough River, but
that river has been impounded at rkm 16 since 1897, chan-

nelized below the dam in 1910 to facilitate logging opera-
tions, and shorelines hardened and riprapped in that same
lower reach thereafter. Indeed, all remaining Tampa Bay riv-

ers have also been highly modified by impoundment or phos-
phate mining operations. In the modern context, as the
Suwannee River GS population continues to increase,

Fig. 19. Map of the Pearl River system, showing the known distri-
bution of the Gulf Sturgeon, including individual historical records
(pre-1993) and total scientific sampling records by location through
2008. Low-head sills on the Pearl River (Pool’s Bluff Sill, rkm 78)
and Bogue Chitto River (Bogue Chitto Sill, 80 rkm upstream of
Pearl River mouth), and the Ross Barnett Dam at rkm 486, are
denoted with black bars
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approaching contemporary carrying capacity, it can be
hypothesized that out-migration will increase, potentially
resulting in renewed use of the Tampa Bay estuary as an
important GS winter feeding ground.

Mobile River: Historically, one of the largest GS popula-
tions may originally have inhabited the Mobile River system

(including the Alabama and Tombigbee rivers, and their
major tributaries). For 1902, the first year of commercial GS
fishing in the Mobile River, landings of 100 000 lb

(45 400 kg) were reported (Alexander, 1905). The Mobile
system is the largest and geographically most extensive
southeastern U.S. river watershed east of the Mississippi

(Table 2) (Fig. 20), potentially providing the largest amount
of GS riverine habitat. Historical records substantiate the
occurrence of large GS in far upper reaches (Tuscaloosa
Times, 1872, 1889; Alabama Game and Fish News, 1930a,b;

Mettee et al., 1996) of tributary rivers including the Coosa,
Cahaba, Tallapoosa, and Black Warrior rivers (Table 5).
However, the Mobile river system has been highly frag-

mented by dam construction that began on the Alabama
River in 1887. By the turn of the 20th century 17 dams had
been constructed on that river alone. They were subse-

quently replaced by five higher dams by 1915, and again
replaced by three still higher dams constructed in the 1960s–
1970s. Currently, there are 17 major dams on the Alabama,
Tombigbee and Black Warrior rivers combined (locations of

ten shown in Fig. 20), leaving only the lower 220–227 rkm
of the Mobile River system unimpounded below the Clai-
borne and Coffeeville dams. However, the unimpounded

reach has been extensively altered by dredging for naviga-
tion. Blockage of upriver migration by dams was already a
factor when commercial sturgeon fishing was subsequently

initiated. For a more comprehensive synopsis of negative
physical and hydrological impacts upon sturgeon species

T
a
b
le

5
(C

o
n
ti
n
u
ed
)

L
o
ca
li
ty

D
a
te

L
en
g
th

(f
t
&

in
)

[c
m
]

W
ei
g
h
t
(l
b
)

[k
g
]

N
o
te
s

P
h
o
to
g
ra
p
h

S
o
u
rc
e
o
r
C
it
a
ti
o
n

P
a
sc
a
g
o
u
la

R
iv
er

sy
st
em

,
B
o
w
ie

R
iv
er
,
M
S

Ja
n
u
a
ry
-F
eb
ru
a
ry

1
9
7
3
o
r
1
9
7
4

N
A

3
7
0
lb

[1
6
8
k
g
]

C
a
u
g
h
t
in

g
il
l
n
et

se
t
fo
r
ca
rp

N
o

R
ey
n
o
ld
s
(1
9
9
3
),
A
p
p
en
d
ix

5

P
ea
rl
R
iv
er
,
M
S
,
b
el
o
w

R
o
ss

B
a
rn
et
t
D
a
m

sp
il
lw
a
y

1
9
7
6

7
ft

3
in

[2
2
0
cm

]
2
6
3
lb

[1
1
9
k
g
]

C
a
u
g
h
t
b
y

co
m
m
er
ci
a
l

fi
sh
er
m
a
n

N
o

C
it
ed

in
U
S
F
W
S
,
G
S
M
F
C
,

a
n
d
N
O
A
A

(1
9
9
5
),
p
p
.
6

L
a
k
e
B
o
rg
n
e,

L
A
,
P
ea
rl
R
iv
er

es
tu
a
ry

1
9
7
8

[~
2
0
0
–2
5
0
cm

]
es
ti
m
a
te

fr
o
m

p
h
o
to
g
ra
p
h

3
8
7
lb

[1
7
6
k
g
]

C
a
u
g
h
t
in

sh
ri
m
p

tr
a
w
l,
1
9
7
8
R
o
b
er
t

K
en
n
y

Y
es

H
.
R
o
g
il
li
o
,
L
D
W
F
,
p
er
s.

co
m
m

A
p
a
la
ch
ic
o
la

R
iv
er
,
F
L

9
/8
/1
9
8
9

[2
4
0
cm

a
]

2
0
5
lb

9
3
k
g

S
ci
en
ti
fi
c
n
et

co
ll
ec
ti
o
n

N
o

U
S
G
S
A
p
a
la
ch
ic
o
la

R
iv
er

d
a
ta
b
a
se

A
p
a
la
ch
ic
o
la

R
iv
er
,
F
L

6
/1
8
/1
9
9
8

[2
5
0
cm

a
]

—
S
ci
en
ti
fi
c
n
et

co
ll
ec
ti
o
n

N
o

U
S
G
S
A
p
a
la
ch
ic
o
la

R
iv
er

d
a
ta
b
a
se

P
ea
rl
R
iv
er

sy
st
em

,
B
o
g
u
e
C
h
it
to

R
iv
er
,
L
A
,
P
a
ig
e
L
a
k
e

6
/1
1
/2
0
0
2

[2
2
7
cm

]
~3

2
5
lb

[1
4
8
k
g
]

S
ci
en
ti
fi
c
n
et

co
ll
ec
ti
o
n

Y
es

H
.
R
o
g
il
li
o
,
L
D
W
F
,
p
er
s.

co
m
m
.
2
0
0
2

P
ea
rl
R
iv
er

sy
st
em

,
B
o
g
u
e
C
h
it
to

R
iv
er
,
n
ea
r
M
cC

o
m
b
,
M
S

7
/1
4
/2
0
0
5

6
ft

9
in

[2
0
6
cm

]
—

C
a
u
g
h
t
b
y
k
a
y
a
k
er
s

Y
es

E
n
te
rp
ri
se
-J
o
u
rn
a
l
(2
1
Ju
ly

2
0
0
5
);
W
.
T
.
S
la
ck
,
U
S
A
C
E
,

p
er
s.
co
m
m
.,
2
0
1
6

N
A
,
n
o
t
a
v
a
il
a
b
le
.

Fig. 20. Map of the Mobile/Alabama/Tombigbee River system,
showing the known Gulf Sturgeon historical and recent records
through 2008. Ten of the largest dams are denoted by black bars.
The two lowermost barriers to GS migrations are the Coffeville Dam
(rkm 193) and Claiborne Dam (rkm 207)
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from human alternation of the Mobile River system, refer to
Kuhajda and Rider (2016), this volume.
Together, denial of access to upriver habitat, river frag-

mentation, and commercial fishing rapidly depleted the

Mobile River system GS population. It is impossible to
determine how abundant the species may have been histori-
cally in the Mobile system. After the report of large landings

in 1902, more than two decades passed before landings of
only 9666 lb (4388 kg) were again reported (Fiedler, 1930)
for 1928, the last landings ever reported. Recent GS Mobile

River records from fishermen or scientific sampling have
been few, limited to single individuals, and restricted to the
lower river and estuary (Fig. 20) (Reynolds, 1993; Mettee

et al., 1994, 1995, 1996). Net sampling surveys in recent dec-
ades have been inadequate to determine the status of the spe-
cies in the unimpounded reaches of the Mobile system.
However, recent environmental DNA (eDNA) analysis of

river water suggests the presence of GS in those reaches (S.
Rider, ADCNR, pers. comm., 2015). There is an equal or
more extensive unimpounded reach (220–227 rkm) available

as GS habitat in the Mobile River system below the Cof-
feeville and Claiborne dams (Fig. 20) than is available in the
171 rkm reach below the JWLD on the Apalachicola River,

the 78–80 rkm braided reach available below the Bogue
Chitto and Pool’s Buff sills on the Pearl River, or the
222 rkm reach below the ‘Point A’ Dam on the Conecuh
River (Fig. 12). All three of those comparative river systems

support GS spawning populations. Additionally, Mobile Bay
represents the second largest estuary potentially available as
juvenile GS winter feeding habitat (Table 2). Thus, it appears

that habitat should be sufficient to support population recov-
ery. However, the Mobile River has been highly altered by
dredging and channelization. Deep holes to serve as critical

seasonal holding habitat may have been eliminated by dredg-
ing. Moreover, dredging has so reduced the river gradient in
the unimpounded reaches below the first dams (Randall

et al., 2013) that flow may be insufficient (Kynard, 1997) to
attract adult GS as potential spawners, and YOY nursery
habitat may be adversely impacted. Finally, extensive indus-
trialization and pollution of the Mobile Bay estuary over

many decades may represent another re-population obstacle
of undetermined impact. The city of Mobile boomed as a
major shipbuilding and manufacturing center during World

War II.

Mississippi River: The rarity of historical records or recent

reports of GS in the Mississippi River (Reynolds, 1993;
Ross et al., 2001a) seems curious, particularly given the reg-
ular use of Lake Pontchartrain and Lake Borgne by Pearl
River GS. Only occasional records of GS have been

reported from the Mississippi-Atchafalaya River system
(Reynolds, 1993; Ross et al., 2001a. When the ancestral AS
source species expanded its range into the GOMEX, large

GOMEX rivers lacking competing sturgeon species were
colonized by the GS. However, the Mississippi River may
have posed an obstacle to colonization due to competitive

exclusion from three previously established freshwater stur-
geon species LS, SVS, and PS. All three competitors appear
to have existed in enormous numbers prior to human

exploitation. For example, in 1899, LS and SVS (probably
including PS) commercial landings of 178 881 lb
(81 212 kg) and 496 614 lb (225 463 kg), respectively, were
reported from the Mississippi River (Townsend, 1902). An

instructive parallel of competitive exclusion is the case of
the AS and LS where the species ranges meet in the St.
Lawrence River. The zone of sympatric overlap is very

small, consisting of the low salinity estuarine transition zone
(ETZ) nursery. Moreover, it is only the juveniles of the two
species that co-exist by partitioning the benthic food

resource (Guilbard et al., 2007). Facing an established LS
freshwater competitor, adults of the anadromous AS do not
ascend further into the freshwater reaches of the St. Lawr-

ence River. A further obstacle to GS colonization of the
Mississippi River as a spawning river may have been the
great distance upstream that would have to be traversed to
find gravel substrate suitable for spawning.

Rio Grande River: The only species of sturgeon reported to
inhabit Texas freshwaters is the SVS in the Rio Grande

River (Evermann and Kendall, 1894). However, a commer-
cial catch of 22 400 lb (10 170 kg) of ‘sturgeon’ was landed
in Cameron County (probably the port city Brownsville),

Texas in 1897 (Townsend, 1900). This catch came from
seines set in estuarine bays (probably in the vicinity of the
Rio Grande River mouth), and thus the species was
undoubtedly the GS. Fowler (1923) reported the ‘common

sturgeon’ (= GS, referred to as AS in the early literature) as
occurring rarely in Texas. Catches of riverine SVS, a species
confined to freshwater, were always listed as ‘Shovelnose

Sturgeon’ in the U.S. Commissioner of Fisheries landings
reports, or otherwise referred by the old vernacular name
‘hackleback’. However, no landings of SVS were ever

reported from Texas, nor any further ‘sturgeon’ landings.
More recently, there have been only two incidental records
of the GS in Texas waters, one angled in the open GOMEX

off Galveston, and a large adult reported fisheries biologists
far upriver in the Rio Grande during electrofishing opera-
tions (Reynolds, 1993). If a historical GS spawning popula-
tion did inhabit the Rio Grande River, as suggested by the

1897 catch, it was extirpated early on. The river is now too
highly fragmented, altered, and depleted of flow in the lower
reaches to sustain a GS population.

Sabine River: The Sabine River, which forms the border
between Louisiana and Texas, lies within the historical geo-

graphic range of the GS. It appears to have suitable GS
habitat in the contemporary unimpounded 246 rkm reach
below the Toledo Bend Dam, and would have provided
substantially greater upriver habitat prior to impoundment.

Given the paucity of early commercial fishing activity, and
hence fishery landings reports, from western Louisiana and
Texas, it is impossible to determine if GS ever inhabited

this river. No anecdotal records of GS have yet been dis-
covered for the Sabine River. The only historical report on
the fish fauna of this river is that of Evermann (1899), who

observed that very little commercial fishing took place in
the Sabine River region, and what did was conducted with
baited hoop nets and for local consumption. He
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commented that shad (Alosa spp.) were not caught in the
local fishery since methods appropriate for capture of shad
(i.e., anchored gill nets), were not employed. Thus, without
gill net fishing or seining, neither shad nor GS would have

been caught.
In recent times, pollution from the oil refinery complex at

Port Arthur along the shores of Lake Sabine adversely

impacts water quality in the low salinity Sabine River estu-
ary. That estuary may once have served as juvenile winter
feeding habitat for a hypothetical historical GS population.

Riverine habitat appears to satisfy all GS habitat require-
ments (Randall et al., 2013: Categorical Habitat Attribute
Acceptability Tool, or CHAAT). The five necessary attri-

butes, i.e., those required by the GS to support sustained res-
idence of a reproducing population in a given river (with
minimum [negative] criteria specified below which a self-sus-
taining population is unlikely) are: (i) Elevation at barrier or

head ≥10 meters (negative at 9 m); (ii) Average annual dis-
charge (for spawning) ≥2232 cubic feet per second [cfs] (nega-
tive at 1148 cfs); (iii) Watershed area ≥6257 km2 (negative at

4133 km2); (iv) Mainstem length to river mouth ≥280 km
(negative at 227 km); and (v) Anthropogenic barrier distance
(un-impounded length to river mouth) ≥80 km.

Population metrics and trajectories

Natural recruitment, mortality and survival

With a relatively long lifespan, several spawnings per lifetime,
and very high fecundity, the GS life history strategy is one that
can withstand infrequent and often low recruitment success,

punctuated by periodic high recruitment success. Thus, GS
populations tend to be dominated by strong year-classes
spaced at intervals of several years, against a background of

generally weak year-classes (e.g., Figs 9b, 11 and 14). When
an adequate sample of a GS population can be obtained, the
length frequency distribution typically reveals one or more

abundance modes representing those strong year-classes that
dominate population structure for many years. In the strongly
recovering Suwannee River population, a substantial increase
in effective breeding population size has resulted in nearly

annual frequency of strong year-classes (Fig. 4). For the
Suwannee River GS population in 2013, net samples have
revealed successive length frequency modes now occurring

almost annually (Fig. 4), contrasting with the mid-1990s sam-
ples displaying only two dominant length frequency modes
separated by 6–7 years (Fig. 21) (Sulak and Randall, 2002).

Generally, in fish species that do not undertake egg, nest,
or brood protection, egg through age-1 mortality normally
exceeds 99.9% (Miller et al., 1988), close to the 99.96% mor-
tality assumed for age-0 GS in population modeling by Pine

et al. (2001). Miller et al. (1988) hypothesize that most larval
fish die in the first week of life. Thus, even in a good GS
spawning year, only a very small percentage of the spring-

spawned eggs survive to participate in the first emigration to
the estuary in January-February. As advanced by Miller
et al. (1988) successful spawning alone is insufficient to deter-

mine successful recruitment to the spawning population.
In sturgeon, survival to age-1 is probably much less

consequential than subsequent survival through the

subsequent 7–11 juvenile-subadult years before a given year-

class contributes to the spawning population. In the early
post-harvest ban period in Florida, Rago (1993) estimated a
mean annual addition of 517 (95% CI = 367–701 recruits to

the Suwannee River adult population for the period of 1987–
1991. In a model scenario for the Suwannee River GS popu-
lation, with parameter values approximating empirical data

(i.e., 20% annual natural mortality, 5% of adults spawning,
and at least 99.96% egg through age-1 mortality), Pine et al.
(2001) predicted an annual addition to the Suwannee River
population of approximately 1000 recruits per year. Based

on a logistic regression model fitted to abundance estimates
through 2007, Sulak and Randall (2009) estimated an annual
addition of 500–600 recruits to the adult GS population,

conforming closely to Rago’s (1993) estimate. These three
estimates provide a range of 367–1000 fish per year added to
the Suwannee River adult population, providing a basis for

projecting future population growth. In any year, 100
females with modest fecundity (300 000 ova) would spawn a
total of ~30 million eggs, requiring a survival rate of only

0.17–0.33% to age-1 (age 9–10 months) to result in the range
of estimated annual GS juvenile population increment in the
Suwannee River.
Thus, while good spawning success and survival to age-1 is

an initial hurdle that must be surmounted to form a poten-
tial strong GS year-class, that result is not of the overwhelm-
ing importance argued by Gross et al. (2002). In a long-lived

species with a ‘periodic’ reproductive strategy (Winemiller
and Rose, 1992) and high fecundity, many years of total age-
0 year-class failure can be tolerated. Surviving the first winter

of estuarine feeding in age-1 yearlings probably represents a
much more critical hurdle. How many of those juveniles sur-
vive to age-2, gaining sufficient size to be relatively invulnera-
ble to predation and to carry a substantial energy store sets

the stage for contributing measurably to the adult spawning
population many years later. Huff (1975) reported a mini-
mum age to first gonad ripening of 9 and 12 years, with

means of 12.2 and 16.8 years, for males and females,
respectively.

Fig. 21. Length frequency distribution in 50 mm TL intervals for
Suwannee River Gulf Sturgeon 1995 first captures (after Sulak and
Randall 2002, Fig. 9). Modes in the population have been annotated
with approximate year-class year (e.g., 91 = 1991). Approximate age-
at-length is based on pectoral fin spine ring count
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From analysis of 19 years of Suwannee River mark-recap-
ture data, Randall and Sulak (2007) found that year-class
success in surviving to adulthood (i.e., the formation of a
strong year-class) was positively correlated with river flow in

September and December for age-1 fingerlings. These authors
hypothesized that access to low-salinity estuarine feeding
grounds by high-salinity avoiding age-1 GS is greatly

expanded during periods of high river flow. Intercepted in
the middle Suwannee River during the January-February
downriver migration, YOY are very lean (relatively low

weight vs TL), having subsisted upon the sparse prey
resources of a blackwater river. In contrast, after a few
months of winter estuarine feeding, GS transitioning from

age-0 to age-1 become heavy relative to body length (i.e., dis-
play better ‘condition’), with full taut abdomens (M. Ran-
dall, USGS, pers. obs.). Access to estuarine benthic
macrofaunal prey, twice as abundant and six-fold denser in

biomass per unit area than in riverine benthos (Sulak et al.,
2007), appears to be key to the success of yearlings foraging
in the estuary for the first time. Wet Septembers occur with

uneven frequency, depending on the stochastic arrival of late
summer or autumn tropical storms. October is predictably
one of the driest months of the year in North Florida. It

seems probable that high precipitation in September, result-
ing in high fresh water delivery rate to the estuary, sustained
by further mid-winter precipitation to maintain high flow, is
perhaps the most critical threshold determining GS year-class

success. Supporting the hypothesized high autumn freshwater
flow relationship with GS recruitment success (Randall and
Sulak, 2007), Scheuller and Peterson (2010) have reported an

equivalent flow-related recruitment success paradigm for AS
in the Altahama River.
A third critical threshold along the path to sexual maturity

is encountered at about age-6 to age-8 when juvenile GS
transition to full marine feeding in the open nearshore
GOMEX. First marine emigration adds new and substan-

tially elevated mortality risks, including increased predation,
exposure to stochastic mortality from storms and red tides,
potential failure to transition to different prey, and potential
failure to navigate back to the natal river to join the spawn-

ing population. Multi-year scientific monitoring of 1192 PIT-
tagged hatchery-reared GS (from Suwannee parents) experi-
mentally released into the Suwannee River at age 9 months

in 1992 (Chapman et al., 1993) provided evidence (Sulak
et al., 2014) of a marked drop in survival rate beginning at
age-6, the age of onset of first marine migration.

Mortality due to predators. Field logs of the USGS-WARC
(1986–2015) document scientist visual observations of large
predators capturing and feeding upon juvenile GS in the

Suwannee River, including the Bald Eagle (Haliaeetus leuco-
cephalus), Osprey (Pandion haliaetus), and American Alliga-
tor (Alligator mississippiensis). A professional sportfisherman

reported to the USGS field biologists that he frequently
found juvenile GS in the stomachs of Channel Catfish
(Ictalurus punctatus) angled in the upper Suwannee River.

Juveniles are probably also preyed upon by bullhead cat-
fishes (Ameiurus spp.), Bowfin (Amia calva), and Flathead
Catfish (Pylodictis olivaris) in GOMEX rivers, the last species

distributed from the Apalachicola River west to the Pearl
River. Fishery biologists have observed catfishes in the Mis-
sissippi River regurgitating SVS upon capture (W. Slack,
USACE, pers. comm.), suggesting that juvenile GS would

also be probable catfish prey. However, there has been no
systematic investigation of predator fish stomach contents to
evaluate predation on GS. Barred owls (Strix varia), abun-

dant along GS rivers, were reported by fish farmers as trou-
blesome nocturnal predators of fingerling GS being
experimentally raised in ponds in Florida in the early 1990s.

Large size and protective scutes do not render adult GS com-
pletely immune to predation. USGS field biologists have
observed large sturgeon being devoured by alligators,

observed scars of unsuccessful alligator attacks in netted GS
bearing healed deep impressions of alligator teeth on the
head and body, and investigated dismembered carcasses of
large sturgeons obviously fed upon by alligators. Sharks are

probably important GS predators in the GOMEX. Evidence
of partially successful attacks (e.g., large semi-circular bites
to the body that have healed, and missing pectoral or caudal

fins) have been observed by USGS fish biologists in captured
GS. The head and scutes of a GS have been reported from
the stomach of a 161 cm FL Tiger Shark (Galeocerdo cuvier)

caught by an angler off Cedar Key, Florida in 2001 (F. Para-
uka, USFWS, pers. comm.).
The eggs, free embryos, and larvae of the GS are probably

preyed upon by a range of predators that feed opportunisti-

cally over open sand substrates, and in upper river mosaic of
rock, gravel and sand riffle habitats. These probably include
several species of bullhead catfishes, madtom catfishes (Notu-

rus spp.), Blackbanded Darter (Percina nigrofasciata), and
predatory dragonfly (Odonata) larvae. Deng and Xu (1991)
and Zhuang et al. (1997) reported that eggs of Chinese Stur-

geon (Acipenser sinensis) and Dabry’s Sturgeon (Acipenser
dabryanus) are preyed upon by several species of catfishes
and cyprinids. Qing (1993) and Gao et al. (2009) reported

that the majority (up to 90%) of Chinese Sturgeon eggs
deposited below the Gezhouba Dam were consumed by the
same types of bottom-feeding fishes. Caroffino et al. (2010)
found that freshwater crayfishes (Orconectes spp.) consumed

an estimated 300 000 LS eggs during the incubation period
within the lake sturgeon spawning habitat in the Peshtigo
River. Parenthetically, the loss of GS eggs to predators is

not without ecosystem benefits and reciprocal trophic bene-
fits to YOY GS. The millions of eggs annually spawned by
GS in any natal river undoubtedly represent a substantial

caloric transfer to oligotrophic muddy and blackwater river-
ine ecosystems of energy acquired in estuarine and marine
habitats.

Other sources of adult mortality, natural and anthro-

pogenic. Most incidental GS mortalities encountered by field
biologists (Parkyn et al., 2006) or reported to state and fed-

eral resource agencies by the public have been of single, large
adults with no apparent injuries. Old age may be responsible.
Occasionally, large old individuals captured display notably

poor condition, with discolored skin, a thin and flabby body
that is disproportionately emaciated relative to head size
(USGS unpubl.). Others appearing otherwise healthy may
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bear multiple old injuries acquired over a long life, including
predator bites, split rostrums in males from courtship rub-
bing, motorboat prop scars, and missing scutes and deep cuts
suggesting monofilament fishing gear entanglement. Other

potential sources of mortality are death from angling
(Fig. 22), dredge and power plant impingement, boat colli-
sions, and occasional poaching.

Mortality from scientific net sampling and tagging stress
was a substantial problem during GS research prior to 2000
(Tatman, 1984; Carr et al., 1996b; Fox et al., 2000) when

large mesh commercial nets and long sets were employed.
Chapman et al. (1997) reported net mortality of up to 5% in
GS catches from anchored 12.7 cm bar mesh gill nets. The

combined USGS-WARC database for all multi-agency scien-
tific sampling in the Suwannee River, 1986–1999 documents
425 mortalities, mainly subadults and adults, representing
5.9% of total captures. Removal of that number of potential

spawners from the breeding population undoubtedly had a
substantial negative impact on population recovery. How-
ever, sampling mortality has almost been eliminated by con-

temporary sampling and tagging methods using small mesh
gill nets (≤10.7 cm bar mesh), multifilament rather than
monofilament twine nets, and much smaller implanted

telemetry tags. Nonetheless, occasional mortalities have been
reported following gill net capture or surgical implantation
of telemetry tags (Ross et al., 2001b), or upon release after
artificial spawning (Parauka et al., 1991). Safe sampling and

handling precautions to reduce scientific mortalities, devel-
oped by the NMFS (Kahn and Mohead, 2010) in consulta-
tion with GS researchers, have now been adopted for most

field sampling. Additional measures in common use (not all
specified in the NMFS safe handling protocol) include reduc-
ing use of anchored gill nets, using less injurious multifila-

ment nets, tending nets continuously, holding landed
sturgeon on board in sufficiently large tanks or net pens – or
secured on tail ropes in the river – during tagging operations,

returning landed fish rapidly to the water after tagging, and
suspending sampling and tagging during periods of high
(>28°C) water temperatures when GS are otherwise physio-
logically stressed (W. T. Slack, MMNS, pers. comm., 1999;

J. Berg, pers. comm., 2002).

Mass mortalities have been observed accompanying red
tides and toxic algal blooms, during riverine and estuarine
hypoxia following tropical storm flooding, and following
toxic chemical spills (Reuters 2011). Large adults seem par-

ticularly vulnerable to such stochastic fish kills which can
exert a major negative impact on a GS population. Small
pods of GS sometimes succumb to stranding in river pools

during droughts, if not rescued (World Fishing Network,
2010). Eggs, free embryos, and larvae are also vulnerable to
mortality from siltation on spawning grounds and nursery

habitat due to stormwater runoff from unpaved roads,
construction activities, and unsound riparian agricultural
practices.

Aside from acute mass mortalities from a toxic chemical
spill (e.g., Reuters, 2011), direct impacts of contaminants
upon sturgeon would probably be sublethal, resulting either
in impaired growth and physiological function, altered

behavior, or impaired or failed reproduction (refer to reports
in Berg, 2006). Mortality impacts upon early life history
stages (eggs and larvae) from chronic low-level environmen-

tal contaminants would be nearly impossible to detect.
Those acting upon gonad function would also be difficult to
assay in live GS. Such effects upon the GS have not been

studied for any life history stage. However, to gain insight
into potential impacts of environmental contaminants upon
the GS in Florida rivers, USFWS conducted studies to ana-
lyze the concentrations of metals and organic pollutants in

muscle and blood of juvenile GS, and assess the impact of
excessive environmental nutrients (Bateman and Brim, 1994,
1995; Alam et al., 2000). The same agency also contracted a

literature synopsis of contaminant impacts upon sturgeon
(Berg, 2006) Specific pollution issues in the several GS natal
rivers have been briefly detailed in Wakeford (2001). Con-

taminants or excess nutrients may impact the GS indirectly
by altering the abundance and composition of macrofaunal
prey (Peterson et al., 2013). Direct and indirect contaminant

impacts have received considerable research attention in
other North American species, e.g., the White Sturgeon
(WS) (Acipenser transmontanus), and Green Sturgeon (GRS)
(Acipenser mediorostris) (refer to Hildebrand et al., 2016;

Moser et al., 2016 – this volume).
Again, aside from acute fish kills during red tides or from a

virulent disease epidemic, the impacts of parasites and diseases

upon individual sturgeon or populations are typically subtle,
difficult to detect or assess, and in the GS barely studied. In an
exhaustive bibliography of all known publications and reports

on the GS through August 2015, Price et al. (2015), no studies
dealing with GS diseases, and only one with parasites (Heard
et al., 2002) were listed. However, most sturgeon species are
susceptible to the same fish diseases and parasitic organisms.

A good treatment of these issues for the LS is presented in
Bruch et al. (2016, this volume).

Mortality impacts upon GS year-class strength

The natural mortality rates estimated for the Yellow, Choc-

tawhatchee, and Suwannee river GS populations (11–17%)
after enactment of state harvest bans (Table 1) are mathe-
matically consistent with self-sustaining sturgeon populations

Fig. 22. Juvenile Gulf Sturgeon, 618 mm TL, hooked on catfish
trot-line (‘bush-hook’) in the Blackwater River, FL (Berg, 2004, with
permission), released by field biologists
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(Boreman, 1997). Higher rates (21–40.5%) determined for
the Apalachicola, Pascagoula, and Pearl River GS popula-
tions (Table 1) are not (Boreman, 1997; Pine et al., 2001;
Tate and Allen, 2002). The highest reported Pearl River rate

(40.5%) approaches the mortality rate estimated for the
Suwannee River population (46.2%) (Table 1) while GS har-
vest was still ongoing (Huff, 1975). Commercial bycatch mor-

tality in river trap fisheries, industrial pet food fisheries, and
coastal shrimp fisheries, prior to GS harvest bans, state net
bans, and the ESA listing has been amply documented

(Roithmayr, 1965; Swift et al., 1977; Wooley and Crateau,
1985; Reynolds, 1993; and USFWS, GSMFC and NMFS,
1995). Continued bycatch mortality has been hypothesized as

an obstacle to GS population recovery in the Pearl and Apa-
lachicola rivers (Wooley and Crateau, 1985; Kirk et al.,
1998; Morrow et al., 1998; Tate and Allen, 2002). Fishery
mortality is one of two major sources of mortality identified

for sturgeon species in the southeastern U.S. (Collins et al.,
2000). Wooley and Crateau (1985) estimated an incidental
GS mortality of 7.1% during the autumn and winter com-

mercial shrimp trawl fishery in Apalachicola Bay in the early
1980s. Winter estuarine and coastal feeding presents a period
of particular vulnerability to trawl capture and to dredging

activities. For example, shrimp trawl operations undertaken
to protect and relocate GS during dredging for beach nour-
ishment in winter 2012–2013 yielded 32 GS from the near-
shore GOMEX between Pensacola Pass and Mobile Bay (F.

Parauka, USFWS, pers. comm.).
However, quantitative evaluation of net bycatch as a

major source of GS mortality is impossible due to the lack

of GOMEX fisheries observer programs. Nonetheless, a sig-
nificant positive correlation has been found in the Pearl
River population between mortality rate and commercial

fishing effort measured as the number of commercial licenses
issued (Kirk et al., 1998; Morrow et al., 1998). From the
mid-1960s to the mid-1980s, licenses issued increased approx-

imately six-fold. Simultaneously, mean FL of Pearl River GS
declined from ~1400 mm to ~750 mm, suggesting size-selec-
tive removal of subadults and adults. The mode in the age
frequency distribution in the Pearl River in the mid-1990s

was comprised of age-3 to age-4 juveniles, with a notably
low number of adult GS in the population (Fig. 18).
It is difficult to quantify the indirect but chronic GS mor-

tality impacts from natal river habitat alterations including
impoundment, channelization, dredging, and bulkheading.
Riverine habitat in the Apalachicola, Pearl and Mobile sys-

tems has been highly altered by dams and navigation projects
(Wooley and Crateau, 1985). Alterations may limit GS carry-
ing capacity in these systems not only by habitat fragmenta-
tion and diminution, but also by reducing flow needed for

spawning and larval drift, eliminating deep holding/resting
and migration staging areas required by juveniles and adults
(Wooley and Crateau, 1985), and diminishing freshwater

input. These alterations thereby elevate salinity in estuaries,
and periodically contribute to hypoxia during periods of
diminished releases through dams. Thus, uncontrolled and/or

uncorrected habitat alterations may limit the ultimate success
of a promising year-class at various stages in the GS life
cycle.

Population recovery – Example of the Suwannee River population

Boreman (1997) determined the fundamental vulnerability of
sturgeon populations to varying rates in fishing mortality.
Vulnerability to mortality, population trajectory, population

viability, and recovery potential recovery of the GS in speci-
fic river populations, or theoretically, has been variously
explored and modeled (Morrow et al., 1999; Pine et al.,
2001; Flowers et al., 2009; Ahrens and Pine, 2014). The theo-

retical effect of early juvenile mortality upon sturgeon popu-
lations has been by evaluated by Tate and Allen (2002) and
Gross et al. (2002).

To date, mathematically demonstrable GS population
recovery is evident only in the Suwannee River among the
seven natal river populations (Table 1). From an 11-year

mark and recapture study in the Suwannee River, Chapman
et al. (1997) concluded that the GS population was stable at
~3000 subadults and adults, but was not increasing. How-

ever, following the harvest ban in 1984, a statistically signifi-
cant positive response was already evident by 1990–1992
(Fig. 3) (Rago, 1993). Between 1984 and 2012, the popula-
tion has increased 3–5 fold. The observed rate of population

increase plotted from population estimates from the early
1990s through 2006 (Table 1) (Sulak and Randall, 2008,
2009) best fits (R2 = 0.9904) an exponential growth model

(Fig. 23). This suggests an absence of density-dependent
effects upon population growth through at least 2006. How-
ever, application of a biologically more realistic logistic

growth model (Sulak and Randall, 2008, 2009) indicates that
the Suwannee population will top out at ~15 200 net-vulner-
able individuals (~11 200 > 900 mm TL) before 2020
(Fig. 24a). According to this analysis the rate of annual pop-

ulation increase post-1987 has varied according to a polyno-
mial parabolic rate function (Fig. 24b), initially increasing,
peaking in 2000–2002, declining thereafter. Adults have accu-

mulated in the recovering population from a low of 25.3%
of sampled individuals in 1972–1973 (Huff, 1975), rising to
64.6% in 2006 (USGS-WARC database, N = 404), subsiding

Fig. 23. Suwannee River Gulf Sturgeon population recovery and
forward projection (Sulak and Randall, 2008, 2009). Mark-recapture
population estimates through 2006 are drawn from Table 1, present
manuscript. Data most closely fit an exponential curve model
(R2 = 0.9904) when estimates of both adults and subadults were
included

114 K. J. Sulak et al.



to 55.5% in 2012–2013 as subadults have also recruited,
increasing their proportional representation (USGS database,
N = 791) 28–29 years after the harvest ban. The apparently

declining juvenile recruitment rate since the peak in 2000–
2002 can be hypothesized to represent an inverse response to
the accumulation of adults. Indeed, density-dependent

Mathusian effects on juvenile survival (i.e., increased mortal-
ity rate) can be anticipated in a rapidly growing mixed-age
adult population that theoretically produces an increasing
number of YOY annually.

Density-dependency seems to be signaled as well by recent
expansion of habitat use for spawning (Parkyn et al., 2007;
USGS-WARC unpubl. data) and for seasonal holding area

(USGS-WARC, unpubl. data) in the upper Suwannee River
and major tributaries. Investigations prior to 2002 did not
reveal GS spawning or holding activity in these same areas.

Two boat collisions with large jumping sturgeons in the
Santa Fe River in 2015, (K. Parker, FWC, pers. comm. 7
July 2015) the first ever such reports, confirmed unprece-
dented adult excursions into that tributary. Detections of five

acoustically-telemetered adults well above rkm 225 during
the spring spawning period for the first time ever in 2015 are
also unprecedented. The same is true for recent adult excur-

sions into the Alapaha River tributary (Fig. 5) over the past
decade, resulting in GS strandings during mid-summer low

water (World Fishing Network, 2010), and increased public
reports of GS in the Withlacoochee River.

Population carrying capacity

The abundance of GS in any natal river, when the popula-
tion is fully recovered, would ultimately be limited by carry-

ing capacity of present day essential habitat (riverine,
estuarine, and coastal marine). Due to landscape use change
and riverine and estuarine environmental degradation and

eutrophication (Morrow et al., 1998), current carrying capac-
ity can be hypothesized to be substantially lower than it was
historically. Comparative analysis of historical fishery data

vs contemporary scientific sampling data provides insight
into carrying capacity.
Present day GS carrying capacity for all natal river popu-

lations can be hypothesized to be diminished from the pre-

fished era, particularly due to historical watershed alter-
ations. Based on early historical 1898–1902 landings reports,
a GS mean weight in the fishery was estimated as 22.7 kg

(above, and Table 3). When used to convert reported land-
ings weights to estimated numbers of fish caught over the
1898–1917 heyday of the fishery (prior to the 1918 crash),

the number of GS harvested from the Suwannee River popu-
lation would equal 26 400–30 800 fish >1000 mm TL
(above). Accordingly, a Suwannee River population of
10 000–15 000 would represent 18–31% of the pre-fished

Suwannee River GS population in the 1880s. Pine and Mar-
tell (2009a,b) estimated that the current Suwannee River
population biomass is probably about 20–30% of original

pre-fishery (pre-1895) biomass, a surrogate for abundance.
Applying a ‘structured Stock Reduction Analysis’ (sSRA)
method to the same question, Ahrens and Pine (2014) arrived

at a carrying capacity of ~10 000 net-vulnerable GS, closely
matching the prior estimate of Sulak and Randall (2008,
2009) and similarly suggesting that the population had

already topped out at full carrying capacity by 2014. Ahrens
and Pine (2014) based their computations on assumptions
which counter knowledge of the early GS fishery and GS
habitat requirements. They assumed that the Apalachicola

and the Suwannee rivers produced the largest historical GS
landings, and thus originally supported the largest GS popu-
lations prior to human impacts. They also hypothesized that

length of river habitat correlates with carrying capacity, a
faulty assumption for an anadromous fish that does not feed
within the river, except in the larval and YOY stages. As

reported by the Bureau of Commercial Fisheries, the largest
early GS fishery catch in the peak year of 1902 did not come
from the three longest unimpounded commercially fished GS
rivers at the time (the >800 rkm Apalachicola River, the

>400 rkm Pascagoula River, or the >390 rkm long Suwannee
River [273 rkm long below Big Shoals (Fig. 5), a natural
barrier except during high water]. Instead, it came from the

~380 rkm long Escambia River [222 rkm long below the
‘Point A’ Dam near Andalusia, AL (Fig. 12), the location of
rapids which were probably a natural barrier to GS prior to

dam construction]. In that 1902 banner harvest, the weight
of the Escambia River catch was 3.5 times that of the Apala-
chicola River, 3.1 times the largest ever Apalachicola River

Fig. 24. (a) Suwannee River Gulf Sturgeon population projection,
with data from Fig. 21 fitted to a logistic regression model (Sulak
and Randall, 2008, 2009). (b) Population growth (number of recruits
per year entering the adult population) rate change over time, 1987–
2006, fitted to best-fit function = a parabolic (polynomial) function
(Sulak and Randall, 2008, 2009)
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landings in 1900, and 5.9 times that of Suwannee River land-
ings in the same year (Townsend, 1901; Alexander, 1905).
Thus, river length did not correlate with fishery yield, a
surrogate for original GS carrying capacity. Accordingly,

river length cannot readily be correlated with GS carrying
capacity.
However, Ahrens and Pine (2014) essentially contradicted

Pine and Martell (2009a,b) who had earlier concluded that
the current Suwannee GS population represented only 20–
30% of historical pre-fishery abundance. In contrast to both

Sulak and Randall (2008, 2009) and Pine and Martell
(2009a,b), Ahrens and Pine (2014) assert that present abun-
dance ‘. . . is similar to current estimates of population size

suggesting that this population is approaching the pre-exploi-
tation levels’. They concluded that natal river carrying capac-
ity, hypothesized to be a function of river length, has
remained unchanged since the 1880–1890s. Ahrens and Pine

(2014) advanced that thesis as a basis for setting contempo-
rary population recovery targets for resource managers.
The present authors suggest that this thesis may not be

well-grounded and deserves critical scrutiny before being
adopted for GS management. Infrequent port surveys and
suspected under-reporting by fishermen render the historical

landings data unreliable, most probably substantially lower
than the actual GS catches. Moreover, the conclusion of
unchanged carrying capacity was forced by a fundamentally
untested premise that carrying capacity is determined by

length of river habitat available as juvenile habitat below the
first barrier to migration (among seven river habitat metrics
evaluated). However, Ahrens and Pine (2014) erred at the

outset in stating that the Apalachicola and the Suwannee riv-
ers produced the largest historical GS landings, and thus
originally supported the largest GS populations prior to

human impacts. They erred as well in their hypothesized cor-
relation of length of river habitat with carrying capacity
(above) for an anadromous fish that does not feed in the

river, except for the first year of life.
Nonetheless, based on a CHAAT model analysis of 38

river habitat attributes (Randall et al., 2013), length of free-
running river below the first natural or manmade obstacle to

GS migration is indeed one of five determinants of whether
or not a self-sustaining GS population can exist in a given
river in the first place. Moreover, the extent of the freshwater

river reach below the first obstruction to migration (other-
wise unimportant to subadults and adults) is important to
YOY in delimiting nursery habitat. The extent of river reach

is improbable as a determinant of carrying capacity of a
given river since age-1 and older GS do not feed in the river
(Mason and Clugston, 1993; Gu et al., 2001; Sulak et al.,
2007). Instead, number and extent of seasonal holding/rest-

ing areas (energetic refugia) for GS (Sulak et al., 2007) may
be the factor that ultimately limits subadult-adult carrying
capacity. Beyond a critical minimum threshold of river

length for GS river occupancy, river length is not statistically
significant to recruitment of juveniles to the overall river
population (Randall et al., 2013). Neither river length, nor

any of the other model habitat metrics used by Ahrens and
Pine (2014) determines carrying capacity. A more probable
determinant is the extent of oligohaline to mesohaline

shallow estuarine habitat available to age-1 to age-6 juvenile
GS during the critical winter feeding period that is important.
Success in growth, survival, and ultimate recruitment of juve-
niles depends on volume of river outflow in autumn and win-

ter (Randall and Sulak, 2007), i.e., the effective dilution of
GOMEX marine waters as a determinant of the areal extent
of the estuarine feeding zone. Volume of freshwater outflow

determines the size of low to medium salinity area in the
estuary and adjacent shallow GOMEX available to salinity-
intolerant juvenile GS (which may be smaller or larger than

the geographic area of a given bay or sound). In particularly
favorable winters, high Suwannee River outflow extends the
‘estuary’ into the GOMEX well beyond the fringing oyster

reef, the normal physical barrier to influx of high salinity
marine water. A high rate of delivery of fresh water probably
insures optimal dissolved oxygen conditions on the feeding
grounds. Paralleling the conclusions of Randall and Sulak

(2007), but for juvenile AS in the Altamaha River, Georgia,
Scheuller and Peterson (2010) similarly determined that ‘fall
discharge was the only predictor variable that significantly

explained variation in annual year-class strength.’

Habitat and trophic requirements and preferences

Food habits and feeding chronology

Free embryo, larvae and YOY food habits. The hatchling GS
free embryo emerges from the egg membrane in late-develop-

ment, but is still dependent upon the yolksac for nutrition,
and lacking respiratory organs. The yolk of sturgeon eggs is
a rich, high-energy food source. In terms of percent composi-

tion by weight, eggs of commercially cultured sturgeons are
composed of 48–56% crude protein dry weight (including up
to 28 amino acids) and 24–31% lipids (Gong et al., 2013).

Free embryos of the GS initially avoid light and seek dark
cover (Kynard and Parker, 2004) under gravel, a behavioral
stage typical of the free embryos of several other sturgeon

species. In this regard, Boglione et al. (1999) have reported
that the newly hatched free embryos of Adriatic Sturgeon
(Acipenser naccarii), are similarly photonegative. Laboratory
hatched GS free embryos emerge at 6.6–8.3 mm long and

weigh ~8.0 mg (Parauka et al., 1991; Bardi et al., 1998). Free
embryos do not swim or disperse upon hatching. They seek
cover (Kynard and Parker, 2004), hiding beneath spawning

ground gravel, lying on their sides and vibrating the tail to
facilitate gas exchange. Only four GS free embryos, with
their habit of hiding interstitially among spawning ground

gravel, have been collected in the wild (Table 4).
Exogenous feeding begins with the free-swimming GS lar-

val stage (sensu Kynard and Parker, 2004), about 5–8 days
posthatch at a TL of 14.7 mm (Bardi et al., 1998; Kynard

and Parker, 2004). The melanin plug at the posterior end of
the alimentary canal is shed within one day of initiation of
feeding (Bardi et al., 1998). First feeding larvae, ca 15.5–
17.5 mm TL (Bardi et al., 1998) disperse downstream and
initiate drift foraging. During downstream dispersal, GS lar-
vae display an optionally benthic-pelagic mode of plankton

feeding, which by day 10 becomes largely pelagic, swimming
at an altitude of 40–90 cm above bottom (Kynard and Par-
ker, 2004). This distinctive larval feeding ontogeny appears

116 K. J. Sulak et al.



to be unique to the GS among other sturgeon species investi-
gated (Kynard and Parker, 2004). When larvae swim up into
the water column, they maintain position facing into the cur-
rent, suggesting a visual, drift-plankton foraging mode. Lab-

oratory-reared GS larvae readily consumed brine shrimp
(Artemia sp.) nauplii (Foster et al., 1995; Bardi, 1997; Bardi
et al., 1998). The presence of brine shrimp nauplii and cysts

elicited strong larval swimming and searching behavior in
the water column (Bardi et al., 1998). In the early larvae of
the Russian Sturgeon (Acipenser gueldenstaedtii), Boiko et al.

(1993) have shown that chemical imprinting, either olfactory
or gustatory (or both), over the developmental interval of
yolksac larvae (free embryos) is important in subsequent

food acceptance by exogenous-feeding sturgeon larvae.
Free embryos and early YOY use a pause-move foraging

mode while gradually migrating downstream, facing into the
current and maintaining position while feeding, turning to

face downstream when moving (Kynard and Parker, 2004).
By age ~50 days, GS YOY transition to a fully benthic (ven-
trum parallel to the substrate, barbels skimming the sand)

foraging mode. The YOY extended downstream migration
lasts for at least 5 months (Kynard and Parker, 2004). Dur-
ing the first 10 months of life in freshwater, YOY probably

consume primarily aquatic insect larvae (Mason and Clug-
ston, 1993). In the laboratory YOY attain a uniformly dark
pigmentation by age 85 days (Kynard and Parker, 2004).
Wild GS of age 2–4 months from the Suwannee River are jet

black (dull charcoal-black) dorsally and laterally, and have
the underside of the rostrum level with the underside of the
abdomen (Fig. 1d). The few black-stage YOY obtained in

trawls in this river (N = 5, 82–149 mm TL) have always been
found in association with masses of blackened decaying leaf
and twig debris (USGS-WARC, unpubl. data). The same

association has been observed (W. T. Slack, USACE, pers.
comm.) for three black-stage YOY collected by trawl in the
Apalachicola River (Kirk et al., 2010). This habit suggests a

cryptic and perhaps sedentary existence in the black color
phase. The snout and abdomen present one continuous flat
horizontal surface, suggesting the use of currents to maintain
a fixed position by hydrodynamically appressing the body

against the substrate. Decaying vegetative litter, accumulated
in swales, crevices, and depressions in the riverbed, is inhab-
ited by epibenthic invertebrates such as gammarid amphi-

pods and aquatic insect larvae that are probable black-stage
YOY prey (Mason and Clugston, 1993). Larger bicolored-
stage YOY (Fig. 1e) display the brown to gray above, off-

white below counter-shaded pattern typical of adults, and
have the underside of the rostrum notably angled up relative
to the underside of the abdomen. The shift from black-stage
YOY to bicolored-stage YOY probably accompanies a

switch to mobile foraging on open sand substrate in the river
(Sulak and Clugston, 1999). Observations of bicolored-stage
YOY show that they use the up-tilted snout like a kite when

lifting off the substrate into a current (K. Sulak, USGS-
WARC, pers. obs.).
Allen et al. (2014) have identified salinity as a potential

constraint on juvenile AS habitat use. That is, osmoregula-
tion in high salinity waters exacts an energetic toll in terms
of growth rate and weight gain. In the GS, early YOY

confine their feeding to freshwater reaches of the natal river
(Table 6). At age 10–11 months (late January-early Febru-
ary) spring-spawned YOY migrate to the estuary for the first
time (Sulak and Clugston, 1998, 1999) to initiate a lifelong

seasonal cycle of winter feeding in saline waters, followed by
fasting in freshwater (Mason and Clugston, 1993; Gu et al.,
2001; Sulak et al., 2012). Juveniles up to 900–1000 mm TL

(~age-6) confine winter feeding to oligohaline to mesohaline
estuarine waters. Except for a small percentage of juveniles
and subadults that continue to feed during the post-immigra-

tion and pre-emigration periods, all feeding in freshwater
ceases after the YOY stage (Sulak et al., 2012).
Few YOY have been examined for stomach contents or

isotopic evidence of food sources. Thus, knowledge of prey
consumed by is very limited. One 300 g YOY from rkm 221
in the Suwannee River contained insect larvae (mayflies, chi-
ronomids, and three other insects), a bivalve, detritus, and

biofilm (Mason and Clugston, 1993). Gammarid amphipods
are also important YOY GS prey (Mason and Clugston,
1993) as is true larger GS juveniles (Huff, 1975), and for sev-

eral other sturgeon species (Dadswell, 1979; Holcik, 1989;
Nigro, 1991; Hatin et al., 2007). Stable isotope analysis of
muscle tissue from two YOY confirmed a diet based entirely

on terrestrial carbon from freshwater prey (Sulak et al.,
2012).

Juvenile, subadult and adult food habits. Marine and estuar-

ine prey eaten by age-1 (spring-spawned GS are actually 8–
9 months old upon migration to the estuary) and older GS
have been analyzed directly from stomach contents using

harvested fish (Huff, 1975), sacrificed individuals (Mason and
Clugston, 1993), and mortalities from netting or tagging
(Carr et al., 1996b; Fox et al., 2000). Stomach contents have

been analyzed by gastric lavage (Haley, 1998) of live adults
netted on winter feeding grounds (Murie and Parkyn, 2002;
Harris, 2003; Harris et al., 2005), and released thereafter.

Much of the available evidence of GS food habits comes
from stomach contents of large individuals netted during the
spring immigration, still retaining food items from recent
marine and estuarine feeding (Huff, 1975; Mason and Clug-

ston, 1988, 1993; Carr et al., 1996b; Peterson et al., 2013).
Mason and Clugston (1993) hypothesized that GS store

sufficient energy during feeding in saline waters such that

they become ‘indifferent’ to feeding upon riverine prey. They
found that most juveniles and subadults sampled in freshwa-
ter reaches of the Suwannee River had empty stomachs.

Sparse prey resources in light-limited, low productivity tannic
and muddy Gulf Coast rivers render freshwater foraging
energetically mal-adaptive beyond the YOY stage. Cessation
of feeding in freshwater represents an accommodation to the

energetic expense of active foraging for macrofaunal prey
that is four times less abundant, and six times lower in bio-
mass, per unit area in freshwater reaches, than in the estuary

(Sulak et al., 2007). Stable carbon isotope studies confirm
that, beyond the larval and YOY stages, most GS cease to
feed in freshwater, and subsist almost exclusively on prey of

estuarine and marine origin (Gu et al., 2001; Sulak et al.,
2012). Nonetheless, Sulak et al. (2012) found that 6% of
juveniles and subadults (600–1400 mm TL), but no adults,
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continued to feed for 1–3 months after spring immigration
from saline waters, or resumed feeding in freshwater prior to
autumn emigration. It may be hypothesized that such smaller
individuals are not always able to store enough energy dur-

ing the winter feeding period to suffice for multiple months
of fasting. Further evidence of juveniles feeding in freshwater
(captured on baited hook and line) has been reported (Bur-

gess, 1963; Berg, 2004). Mason and Clugston (1993) found
that the stomachs of 5–17 kg GS from middle reaches of the
Suwannee River were either empty (29 of 40 examined) or

contained a small number of freshwater prey. Predominant
prey included aquatic insect larvae (chironmids and may-
flies), and oligochaetes. Occasional gastropods and amphi-

pods were found along with greenish mucus, detritus, and
sand. As the GS abundance increases in recovering popula-
tions, and particularly following poor food resource years on
estuarine and marine feeding grounds, freshwater feeding

may become more common.
Aside from certain juveniles or subadults, a small subset

of individuals within a population, or a large segment of an

entire GS river population may deviate from the overall spe-
cies norms, adapting to local natal river or estuary condi-
tions, including food resources. Thus, Fox et al. (2002)

reported that some Choctawhatchee River adults may not
migrate offshore to feed in winter, but instead remain within
Choctawhatchee Bay, which is sufficiently populated by
ghost shrimp and haustoriid amphipods to sustain the entire

GS population (Heard et al., 2000, 2002). More recent and
robust telemetry data (Fleming, 2013) indicate that about
20% of the population remains in the bay in winter. Simi-

larly, Duncan et al. (2011) reported extended periods (up to
80 days) of GS winter residency within Santa Rosa Sound
(as opposed to feeding in the open GOMEX), the mesohaline

seaward backbay extension of the Pensacola Bay estuary.
Dietary breadth is wide in the GS, with species from at

least 24 major taxa being consumed (Mason and Clugston,

1993). Peterson et al. (2013, supplemental material) provide
a compendium of documented GS prey by drainage and life
history stage. However, a much smaller suite of prey taxa
predominate in the diet. Among the marine food items pref-

erentially selected by subadult and adult GS are soft-bodied
invertebrates (Mason and Clugston, 1993), including brachi-
pods (Glottidia pyramidata), ghost shrimp (Lepidophthalmus

louisianensis), lancelets (Branchiostoma caribaeum), and gam-
marid amphipods (Boschung and Mallory, 1956; Carr, 1983;
Carr et al., 1996b; Fox et al., 2000; Murie and Parkyn,

2002), while amphipods, polychaetes, and other smaller ben-
thos are important in the estuarine diet of juvenile GS. Addi-
tional prey available to and probably consumed by juvenile,
subadult and adult GS feeding in marine, estuarine and

oligohaline river mouth waters include other amphipods
(Haustoriidae, Corophiidae, Amplescidae), cumaceans, iso-
pods (Cyathura), mysids, grass shrimp (Palaemonetes), insect

larvae (Chironomidae, Ceratopogonidae), polychaetes
(Arenicolidae, Nereidae, Orbiniidae, Sabellidae, Capitellidae),
oligochaetes (Tubificidae), brittlestars, starfishes, keyhole

urchins (Mellita), sea cucumbers, globular bivalves (Cardi-
dae, Tellinidae), gastropods, small fishes, decapod crus-
taceans, bryozoans, diatoms, fibrous plant material,

filamentous algae, and detritus (Boschung and Mallory,
1956; Huff, 1975; Mason and Clugston, 1993; Heard et al.,
2002; Murie and Parkyn, 2002; Ross et al., 2009; Peterson
et al., 2013).

Certain prey types appear to generally be avoided by GS.
Thus, despite the abundance and availability of hard-shelled
benthic organisms [e.g., the freshwater snail (Elimia floriden-

sis), the freshwater Asiatic clam (Corbicula fluminea), and
numerous estuarine and marine bivalve species] in GS habi-
tats, such organisms are minor items in the diet. The same is

true for species armed with sharp projections, like the blue
crab (Callinectes sapidus), except that crabs in the softshell
or parchment shell stages may be important prey. Also

under-represented in GS stomach contents are encrusting
organisms or those inhabiting hardened tubes (Mason and
Clugston, 1993). Certain abundant polychaetes (e.g., Laeo-
nereis and Ampharetidae), as well as fishes, are also appar-

ently avoided as prey. Small fishes have been reported, but
only as minor GS stomach contents (Huff, 1975; Mason and
Clugston, 1993).

As in most other bottom-feeding sturgeon species, the GS
depends upon suction-feeding (Carrol and Wainwright, 2003)
to accomplish prey ingestion through a highly-protrusible

siphon-like mouth Miller (2004). This mode of feeding places
a limit on the maximum size of prey that can be ingested
(Mason and Clugston, 1988) at any given life history stage.
It would generally be ineffective for capture of wary, large,

or highly-mobile organisms. Thus, GS necessarily display
size-limited prey selectivity, with emphasis on small benthic
invertebrates of low mobility. Moreover, even large adults of

most sturgeon species continue to consume very small prey
items (Miller, 2004). The tubular mouth in the GS is rela-
tively narrow (compared to head width at the level of the

mouth) and nearly circular in cross-section when protruded.
This morphology corresponds with a diet dominated by
small invertebrates. In contrast, sturgeon species that feed

more extensively on fishes, like the LS (Stelzer et al., 2008;
Bruch et al., this volume), PS (Coker, 1930; Carlson et al.,
1985; Jordan et al., 2016, this volume), and WS (Galbreath,
1979) have a relatively much wider mouth with a more ellip-

tical cross-section.
Benthic macrofaunal sampling to identify high prey den-

sity areas with in combination with acoustic telemetry to

define GS habitat use areas has been applied to circumscribe
juvenile winter feeding areas within the Suwannee estuary
(Edwards et al., 2003; Brooks and Sulak, 2005; Sulak et al.,

2009a) and in the Pascagoula river mouth estuary (Peterson
et al., 2013). Similarly coupled methods have defined proba-
ble adult feeding areas in the nearshore GOMEX off the
Suwannee River (Harris, 2003; Harris et al., 2005), in Choc-

tawhatchee Bay (Fox et al., 2002; Heard et al., 2002), in
Mississippi Sound (Rogillio et al., 2007; Ross et al., 2009),
and in the Pascagoula river mouth estuary (Peterson et al.,

2013, 2016). In Choctawhatchee Bay deeply-burrowing
shrimp have been hypothesized to represent the dominant
food item of subadult and adult GS (<1000 mm TL and

10 kg) wintering in Choctawhatchee Bay (Heard et al., 2000,
2002; Fox et al., 2002), and in Mississippi Sound (Ross
et al., 2009). Ghost shrimp density has been estimated at
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20 individuals m�2 or a total abundance in that shallow bay
of ~500 million (Heard et al., 2002). Also important as food
items are the alpheid shrimp (Leptalpheus forceps), a com-
mensal living in ghost shrimp burrows (Fox et al., 2000,

2002) and haustoriid amphipods (Lepidactylus spp.), abun-
dant inhabitants of sandy substrate. Heard et al., 2002
reported that the stomach of a single adult GS mortality

from Choctawhatchee Bay contained 65 adult ghost shrimps
and 100 haustoriid amphipods. Ghost shrimps may be
important winter prey in other mesohaline coastal bays and

estuaries as well (Carr et al., 1996b). Fox et al. (2000)
reported adults from marine waters captured upon re-entry
into the Choctawhatchee River in spring expelled large num-

bers of blue crabs and ghost shrimp.
Contrary to expectations, Fox et al. (2002) found a nega-

tive spatial correlation between benthic infaunal (macrofau-
nal) density (abundance m�2, excluding ghost shrimp) and

density of relocations of acoustically-tagged GS in Chocta-
whatchee Bay during the winter feeding season. While depth,
salinity, and vegetation were habitat factors at play, this cor-

relation nonetheless suggests that when ghost shrimp are
abundantly available, smaller macrofaunal invertebrates were
ignored. These authors hypothesized that deep-burrowing

ghost shrimp, not captured in benthic grabs, are vulnerable
to powerful GS suction-feeding. Where ghost shrimp are less
prevalent, GS may selectively target alternate preferred prey.
A strong positive spatial correlation between the density

and biomass (per m2) of brachiopods (G. pyramidata) and
concentrations of telemetry relocations of acoustically-tagged
subadult GS was reported in the nearshore GOMEX off the

Suwannee River (Harris, 2003; Harris et al., 2005). Carr
(1983) and Mason and Clugston (1993) had earlier reported
brachiopods and lancelets as important GS food items,

among an array of estuarine and marine prey items. Heard
et al., 2002 hypothesized that razor clam (Tagelus plebius),
lugworm (Arenicola cristata), and acorn worm (Balanoglossus

sp.), three large and very abundant macroinvertebrates, may
be exploited by GS in Choctawhatchee Bay. However, based
on GS telemetry, Fleming (2013) reported that juvenile and
subadult occupancy in the bay appeared to be positively cor-

related with amphipod abundance. Harris (2003), Harris
et al. (2005), and Peterson et al. (2013) reported a significant
positive correlation between GS telemetry relocations and

estuarine areas of highest abundance and biomass of brittle
stars (Amphipholis and Ophiactis), bivalves (Corbula, Crassi-
nella, and Parvilucina), and crabs (Euryplax and Portunus).

However, such a correlation may simply denote rich sub-
strate areas that are generally densely populated by multiple
species of macroinvertebrates and by GS, rather than identi-
fying a GS prey preferences. Nonetheless, density and spatial

concentration (clumping) of benthic prey, both of which
change seasonally, may be important factors in selectivity.
What Chiasson et al. (1997) have elegantly written for LS is

equally true for GS. That is, they are: ‘. . .generalist, oppor-
tunistic predators foraging almost exclusively on macroinver-
tebrates.’ At any given time and location, GS opportunism

may be expressed in targeting the most abundant prey avail-
able, in effect prioritizing the maximum biomass return for
foraging effort. Thus, in both spring and autumn, Harris

(2003) found a significant positive correlation between GS
telemetry relocations and abundance and biomass per unit
area of brachiopods. Autumn relocations in 2001 were simi-
larly correlated with abundance and biomass of the brittle

stars Amphipholis and Ophiactis; the molluscs Corbula, Cras-
sinella, and Parvilucina; and the crabs Euryplax and Por-
tunus. However, spatial correlations between GS locations

and potential prey abundance and biomass in spring 2002
shifted to the amphipod Ampelisca and the clam Ensis. A
high positive correlation was found between frequency of

Suwannee River population GS relocations (76.4–86.4%)
and sand substrate, identifying the preferred nearshore mar-
ine feeding habitat of subadult and adults. In the same near-

shore region off the mouth of the Suwannee River, Sulak
et al. (2008) reported spatial congruence between areas of
high overall benthic infaunal density (Brooks and Sulak,
2005) in sand substrate and areas of high-use habitat by

juvenile GS (Sulak et al., 2008; Figure 9) (Fig. 25). On the
other hand, for GS from the Pascagoula River and Pearl
River populations, Peterson et al. (2013) reported an affinity

for marine sediments with high silt and clay fractions. Over-
all, findings from coupled GS telemetry and benthic prey
resource quantification studies suggest GS target densely

populated patches of individual benthic prey taxa of propor-
tionally high biomass per individual prey item. Open,
unstructured habitat is preferred, either sand or silt/clay,
depending upon density of contained benthic prey. McLel-

land and Heard (2004, 2005) analyzed the benthic macro-
fauna at two Florida coastal sites (off Perdido Key near the
Florida-Alabama border, and off Panama City) where winter

foraging concentrations of GS have been identified by
telemetry (Edwards et al., 2007; Parauka et al., 2011). The
benthos sampled by both conventional bottom grabs and

corers and ‘Yabby’ suction pump samplers was dominated
by polychaete worms. However, bottom grabs are unsatisfac-
tory for collection of deep-burrowing ghost shrimp, which

have been effectively sampled only with the ‘Yabby’ sampler
(Heard et al., 2000; McLelland and Heard, 2004, 2005).

Fig. 25. Spatial correspondence between areas of densest concentra-
tions of potential Gulf Sturgeon benthic prey (dark shading) and
areas of highest juvenile use (ellipses) from acoustic telemetry in the
Suwannee river mouth estuary, winter 2007–2008 (adapted from
Sulak et al. 2008, Fig. 9)
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Most adult GS feed in marine waters in winter, with indi-
viduals from different river populations often congregating in
the same localized areas. Thus, acoustically-tagged Pearl
River and Pascagoula River adults from the westernmost

natal rivers depart summer riverine habitat, rapidly traverse
Mississippi Sound, and then co-occupy winter feeding
ground in the passes between and shoals around GOMEX

barrier islands for several months (Ross et al., 2009). These
feeding grounds have been found to be richly supplied with
benthic prey preferred by GS, prominently including lance-

lets (Branchiostoma floridae). In the middle of the species
range, GS adults from several populations (Escambia, Yel-
low, Blackwater and Choctawhatchee rivers) congregate in a

45 km stretch of GOM coastline from west of Pensacola
Pass to east of Mobile Bay (Parauka et al., 2011). Further
east, GS adults from several Florida populations (Apalachi-
cola, Choctawhatchee, Blackwater, Yellow, and Escambia

rivers) co-occur along a 25 km stretch of coastline from off-
shore of Panama City east to Mexico Beach (Edwards et al.,
2007; Parauka et al., 2011). Rakocinski et al. (1993, 1998)

reported very high densities of lancelets off both Perdido
Key and Santa Rosa Island. It has been hypothesized that
such winter GS concentrations, often panmictic, are driven

by benthic prey availability (Edwards et al., 2003; Ross
et al., 2009), as similarly suggested for winter offshore con-
centrations of AS (Stein et al., 2004). The winter distribution
of Suwannee River GS presents an exception, spreading

along the West Florida shelf to the south and northwest, but
rarely far enough northwest to mix with GS from natal river
populations west of Apalachicola Bay.

While the open nearshore GOMEX is the ultimate winter
feeding habitat for adults, their first stop upon leaving natal
rivers is often the same estuary used by juveniles. Thus, sev-

eral telemetry studies (Carr et al., 1996b; Edwards et al.,
2003; Parkyn et al., 2007), have determined that Suwannee
River adults stayed in Suwannee Sound estuary for 2 weeks–
3 months before leaving for the open GOMEX. Rogillio
et al. (2001) reported that Pearl River adults spent 2–49 days
in the brackish waters of the Rigolets before moving out to
Mississippi Sound. An extended period of initial adult winter

feeding within mesohaline estuaries is also known from
Choctawhatchee Bay (Parauka et al., 1991; Fox et al., 2002)
and the Pascagoula River estuary (M. Peterson, GCRL, pers.

comm., August 2016). However, acoustically-tagged adults in
the Apalachicola River rapidly traversed Apalachicola Bay,
exiting into the GOMEX (Sulak et al., 2009a).

In both saline and riverine environments, habitat attributes
influence GS behavior and thus prey selectivity, regardless of
availability of potential prey. Thus, Sbikin and Bibikov
(1988) reported that juvenile sturgeon observed in aquaria

avoided vegetation, suggesting that sturgeon avoid structured
habitat that may impede orientation and movement. Diver
observations confirm avoidance of submerged vegetation in

juvenile LS (Kempinger, 1996), and much lower use of cob-
ble-wood foraging habitat vs open sand habitat. Clean, med-
ium grain size sand appears to be the preferred GS feeding

habitat. Fine, coarse, and muddy sand are utilized much less
frequently in Florida (Harris, 2003), but not in western pop-
ulations (Peterson et al., 2013). However, regardless of prey

availability and substrate preference, anthropomorphic habi-
tat alteration may alter where GS feed. Thus, Peterson et al.
(2013) have suggested that urbanization and industrialization
in the estuarine mouth of the Pascagoula River may reduce

GS use of feeding habitat in the eastern distributary of that
river.
Subadult and adult GS are tolerant of full GOMEX salin-

ity and use coastal bays and nearshore coastal habitats in
depths generally <10 m as primary winter feeding habitat
(Fox et al., 2002; Edwards et al., 2003, 2007; Ross et al.,

2009; Parauka et al., 2011). Important nearshore wintering
grounds are soft substrate (sand, mud, or muddy sand) areas
supporting a rich prey base of macrofaunal benthos (Fox

et al., 2002; Brooks and Sulak, 2005; Harris et al., 2005;
Ross et al., 2009). However, it is currently unknown if GS
occasionally or routinely descend to greater depths where
similar soft substrate habitat occurs. The closely-related AS

in the Atlantic Ocean has been documented from depths as
great as 40–110 m by trawling (Timoshkin, 1968; Collins
and Smith, 1997). In the Bay of Fundy, AS occupy depths

primarily between 40–70 m (with a maximum of 120 m)
from November to April based on depth-recording satellite
telemetry tags (Beardsall et al., 2016). Other anadromous

sturgeon species including the GRS (Erickson and High-
tower, 2007) and the European Sturgeon (Rochard et al.,
1997) descend to and forage at depths of 100 m. Holcik
(1989) reported that in the Caspian Sea Stellate Sturgeon

(Acipenser stellatus) occur down to 100–130 m and Siberian
Sturgeon (Acipenser baerii) down to 100–150 m. In the Black
Sea Russian Sturgeon descend as deep as 140 m (Holcik,

1989). Khodorevskaya and Krasikov (1999) have reported
that Russian Sturgeon occur to depths of 60 m, Stellate
Sturgeon to 80 m, and juvenile Beluga (Huso huso) to

100 m. Watanabe et al. (2008) used accelerometer tag
telemetry to monitor routine locomotion in Chinese Stur-
geon at maximum depths 106–122 m. These several reports

suggest a maximum biomechanical depth of 100–150 m for
physostomous sturgeons. That is, in order to maintain buoy-
ancy control at depth (Watanabe et al., 2008), sturgeon must
return to the surface periodically to replenish swimbladder

gas. It is probable that GS are thus capable of descending to
and foraging at comparable depths. Whether deep feeding
behavior actually occurs is probably determined by coastal

bathymetry and prey availability as suggested for the AS
(Stein et al., 2004). Potential GS use of GOMEX offshore
habitats in depths >20–30 m is an important question that

remains to be researched.

Feeding chronology (seasonal and ontogenetic): The annual

trophic cycle of the GS may be visualized as a ‘trophic

ratchet’, a pattern of alternating winter weight gain while in
saline waters vs spring-to-autumn weight loss while in river-
ine freshwaters (Sulak and Randall, 2002). This pattern

(Fig. 26a–c) was first observed by Carr (1983), quantitatively
evaluated by Wooley and Crateau (1985), and definitively
confirmed by subsequent studies (Clugston et al., 1995; Ross

et al., 2002; Sulak and Randall, 2002). Several mark-recap-
ture investigations have shown dramatic weight gains within
a single winter season (Fig. 27a–b), ranging up to 137%
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(Wooley and Crateau, 1985), followed by more modest sea-

sonal losses of 0–40% during the period of trophic dormancy
(Table 7). Accordingly, growth in length and weight proceeds

via a series of large winter gains alternating with smaller
summer losses (Sulak and Randall, 2002). In the anadro-
mous GS, this may represent an evolutionary life history

accommodation to comparatively low prey densities in river-
ine habitats (Brooks and Sulak, 2005; Sulak et al., 2007) vs
much higher densities in saline habitats. Southeastern and

GOMEX region blackwater and muddy alluvial rivers offer
rather meager prey resources in contrast to those of produc-
tive rivermouth estuaries (Brooks and Sulak, 2005; Sulak
et al., 2007) and bays (Heard et al., 2002; Ross et al., 2009;

Peterson et al., 2013). Indeed, it can be hypothesized that
anadromy in sturgeons evolved to take advantage of the gen-
erally much greater benthic prey resources in saline waters vs

natal rivers. The energetic advantage gained apparently com-
pensates for increased predation risks and the increased
physiological expense of osmoregulation (lowered standard

metabolic rate and decreased growth rate) in salt water
(McKenzie et al., 1999, 2001; Singer and Ballantyne, 2004).
The trophic advantage of anadromy has been confirmed
from growth rate studies on comparative populations of the

Volga-Caspian Russian Sturgeon. Fish in the anadromous
population grow much more rapidly than those in the river-
resident population (Holcik, 1989). For the GS, invertebrate

prey resources in the Suwannee River consist of very sparsely
distributed organisms of low individual biomass (e.g.,

Fig. 26. ‘Trophic ratchet’ pattern of weight gain in multiply-recaptured
Suwannee River Gulf Sturgeon (after Sulak and Randall, 2002): (a)
Winter gain alternating with summer loss over 13 years in a putative
female (>1500 mm TL); (b) Same over 7 years but for a putative male
topped out <1500 mm TL; (c) Putative small adult female that spawned
in April 1995, losing 21% weight, lost not fully regained by 3 years later

Fig. 27. Seasonal pattern of winter weight gain alternating with
summer weight loss in the Gulf sturgeon populations, based on
tagged and recaptured fish: (a) Pascagoula River (after Ross et al.
2002, Fig. 4, courtesy of Mississippi Department of Fisheries, Wild-
life and Parks, and the Mississippi Museum of Natural Science), (b)
Suwannee River (after Sulak and Randall, 2002, Fig. 3)
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chironomid larvae) (Mason and Clugston,1993) compared to
densely concentrated estuarine and marine organisms of
higher mean biomass per individual (Harris, 2003; Brooks
and Sulak, 2005; Harris et al., 2005; Sulak et al., 2008; Ross

et al., 2009). The energetic cost of foraging is reduced in sal-
ine environments, not only due to denser prey abundance
and concentration of prey in patches, but also due to the

much larger comparative size of individual marine prey
items.
Sulak et al. (2007) tested and refuted the hypothesis of

feeding cessation due to elevated summer river temperatures
(Mason and Clugston, 1993; Chapman and Carr, 1995; Carr
et al., 1996b; Gu et al., 2001). Except for a minor percent-

age of juveniles and subadults, feeding actually ceases upon
immigration in February-April (Sulak et al., 2012) when
water temperatures are near their coldest of the year, not
when water temperatures peak months later. A temperature

threshold (~13–17°C) upon entry into the river in spring
may serve as a cue to the initiation of feeding cessation, but
elevated temperatures are probably not a causal factor.

Many species of sturgeons display extended periods of
trophic dormancy and/or reduced activity during various
times of the year (Magnin, 1963; Dadswell, 1979; Holcik,

1989; Wei et al., 1997), including mid-winter or prior to
spawning (Haynes et al., 1978; Barannikova, 1991; Krykhtin
and Svirskii, 1994; McLoed et al., 1999). The evolution of
large body size enables the GS and other anadromous stur-

geons to store sufficient energy in the form of fat and mus-
cle to endure long periods of fasting in freshwater after
periods of intense feeding in saline waters. The seasonal

cycle of intense estuarine/marine feeding, followed by
extended freshwater fasting, represents an appropriate ener-
getic adaptation to food availability vs the energetic cost of

foraging.
While hiding under gravel, GS free embryos rely upon the

yolksac as the initial food source and do not feed exoge-

nously until the yolk supply is consumed. Free embryos up
to age day-4 do not migrate, but remain in hiding (Kynard
and Parker, 2004) During the free embryo yolksac period,
larval teeth and a functional digestive tract develop in prepa-

ration for exogenous feeding at 5–8 days post-hatch. The
yolksac melanin plug occluding the anus is expelled one day
prior (Bardi et al., 1998). First-feeding GS larvae remain

associated with the substrate, displaying salutatory swim-up
excursions into the water column to attack planktonic prey.
Altitude above substrate of swim-up excursions increases

from an initial mean of 30–40 cm to a mean of 90 cm on
days 12–13 (Kynard and Parker, 2004). Acipenser larvae are
equipped with impressive conical larval teeth, large eyes, and
large nasal capsules (Ryder, 1890), the morphology of cap-

able predators (Fig. 28). Minute teeth are also present on the
pharyngeal floor (Ryder, 1890), tongue, and roof of the
mouth (Boglione et al., 1999), presumably used in trituration

of food items. Olfaction is probably predominant in prey
detection and in triggering feeding search behavior. Indeed,
it may be the primary sense used by early GS free embryos

to locate and pursue prey. In that regard, Boglione et al.
(1999) have reported that olfactory sensors in the Adriatic
Sturgeon are already functional at age day-4, but that

electroreception and vision develop no sooner than day-12.

Regardless of the sensory system used to locate prey, labora-
tory-reared GS free embryos actively pursue live planktonic
prey introduced into culture vessels (Foster et al., 1990;

Bardi, 1997; Bardi et al., 1998). Ryder (1890) reports that
the stomachs of larval AS and Sterlet (Acipenser ruthenus),
feeding ad libitum in rearing ponds, contained freshwater
plankton including Daphnia and Cladocera.

Confirming the intolerance of YOY to saline water (see
Table 6 regarding rare exceptions), stable 13C isotope analy-
sis (Sulak et al., 2012) has confirmed that YOY derive their

carbon from wholly terrestrial sources. Sporadic captures of
single individuals in small bottom trawls (Sulak and Randall,
2005) suggest that during this life history stage in tannic

blackwater rivers (e.g., the Suwannee River) or muddy allu-
vial rivers (e.g., the Apalachicola River), GS YOY forage
individually in a food-poor environment. Solo foraging is

probably enforced by the low abundance, biomass, and
sparse distribution of epibenthic prey, primarily chironomid
larvae. Records for YOY captured or positively observed in
the Suwannee River show that they use the entire non-saline

reach available to them (Sulak and Clugston, 1998), from
rkm 12.5 to rkm 289 (Fig. 5; Table 6). Thus, YOY nursery
habitat has been lost where impassable manmade barriers

(dams or sills) have been placed in GS natal rivers below the
first natural barrier (falls or impassable shoals). The distribu-
tion and abundance of potential GS benthic prey for YOY

feeding in the Suwannee River, spring to autumn, has been
analyzed by Mason (1991). Larval GS soon shift from water
column plankton feeding to benthic cruising, with barbels
skimming the substrate (Kynard and Parker, 2004). Corre-

spondingly, the larval teeth are lost accompanying the switch
to benthic suction feeding. Bicolor-stage YOY have occasion-
ally been captured in trawls, gill-nets, or by electrofishing on

open sand habitat (Table 6). In the Suwannee River, spring-
spawned (March-April) GS descend to the river mouth

Fig. 28. Head of sterlet, A. ruthenus free embryo (13.5 mm TL) just
prior to shedding of yolksac, with jaw teeth and sensory systems
(eyes, nasal capsule, ootic capsule, barbels) developed and poised to
begin exogenous feeding. After Ryder (1890, pp. 291, plate XLI,
Fig. 17)
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estuary for the first time in late January and early February
(Sulak and Clugston, 1998), switching to feeding in saline
waters for the first time, remaining in the estuary until
March. Shallow (<4 m), sandy, low-salinity habitats tolerable

to 9-month old YOY (Altinok, 1997; Altinok et al., 1998)
offer comparatively much greater density and biomass of
benthic food per unit area than does the freshwater river

(Brooks and Sulak, 2005; Sulak et al., 2009a). Arriving from
upriver, YOY of 330–450 mm TL (only 2% under 350 mm
TL) are relatively thin, carrying low biomass. However, with-

out substantial increase in length, they rapidly increase in
weight, storing sufficient biomass by March-April to subse-
quently fast from spring to autumn. Thus, the annual cycle

of alternating feeding and fasting is initiated for the first
time.
Benthic macrofaunal sampling to identify high prey den-

sity areas with acoustic telemetry to define habitat use areas

has been applied to circumscribe juvenile winter feeding
areas within the Suwannee estuary (Edwards et al., 2003;
Brooks and Sulak, 2005; Sulak et al., 2009a) and in the Pas-

cagoula river mouth estuary (Peterson et al., 2013). Similarly
coupled methods have defined probable adult feeding areas
in the nearshore GOMEX off the Suwannee River (Harris,

2003; Harris et al., 2005), in Choctawhatchee Bay (Fox
et al., 2002; Heard et al., 2002), in Mississippi Sound (Rogil-
lio et al., 2007; Ross et al., 2009), and in the Pascagoula
river mouth estuary (Peterson et al., 2013, 2016).

Prey detection and ingestion: In sturgeons (Buddington and
Christofferson, 1985), as in fishes generally (Pavlov and

Kasumyan, 1990), the full gamut of sensory systems is
brought into play in the detection, location, and acceptance
of prey. Ontogeny and environmental context are both

important determinants of which sensory system predomi-
nates in prey detection. In laboratory experiments, Boiko
et al. (1993) demonstrated that early larvae of the Russian

Sturgeon reacted strongly and positively to olfactory stimuli.
However, the above-bottom, head into the current, drift-
feeding mode of larval GS (Kynard and Parker, 2004) sug-
gests that vision is used in prey detection during the plank-

tivorous phase of life, probably in combination with
olfaction and electroreception (Boglione et al., 1999), and
finally gustation upon barbel or snout contact with prey. The

food selected by early larvae of cultured sturgeon when both
benthic (chironomid larvae) and planktonic prey (Daphnia
and copepods) were available suggests a predominance of

visual prey detection of swimming planktonic prey (Bara-
nova and Miroshnichenko, 1969), with larval teeth used to
grasp prey. However, all dentition is lost before early YOY
transition to benthic suction feeding. Transitioned YOY,

juveniles, and adult GS appear to be non-visual feeders, cor-
responding to observations in other sturgeon species (Sbikin,
1974; Buddington and Christofferson, 1985). Morphological

evidence suggests that adult sturgeon lack object discrimina-
tion and color vision capability, as well as the ability to
adjust focus (Pavlov, 1979; Kasumyan and Kazhlayev, 1993).

Under laboratory culture, with constant low velocity current,
natural sand substrate, and subdued illumination, benthic
YOY and early juvenile GS passed within close visual range

of live food items (e.g., Lumbriculus variegatus blackworms)
with no apparent reaction. But when the barbels happened
to contact a blackworm, it was immediately ingested (K.
Sulak, USGS, pers. obs.). Taste and touch sensors of stur-

geon barbels require direct contact to trigger ingestion. Loca-
tion of distant prey is primarily by olfaction (Pavlov and
Kasumyan, 1990; Kasumyan, 1995, 1999). Additionally,

olfaction may serve to sensitize other sensory modalities once
the presence of prey is signaled (Pavlov and Kasumyan,
1990). Detection of prey by smell in sturgeons is accompa-

nied by a switch in swimming mode. When exometabolites of
food organisms were released in aquaria, young (38-days old
to 1.5-year old individuals) of five sturgeon species displayed

searching trajectories consisting of swimming in circles and
S-shaped loops while the head oscillated from side to side
(Kasumyan, 1995, 1999). Correspondingly, Foster et al.
(1990) reported that early juvenile GS displayed excited

swimming when minced blackworms were introduced into
culture tanks. Ampullary organs are abundantly present on
the underside of the snout and dorso-lateral margins of the

rostrum in sturgeons (Teeter et al., 1980; Boglione et al.,
1999, 2006). These organs are morphologically and function-
ally homologous to the electroreceptors of Paddlefish (Polyo-

don spathula) (Jorgenson et al., 1967; Teeter et al., 1980) and
elasmobranchs. Thus, a second ‘distant’ sense may supple-
ment smell to home in on benthic prey, particularly at close
range. In paddlefish, the ampullary sensory system of YOY

(120–170 mm TL) is the primary short-range sense (for dis-
tances up to 10 cm) used to detect and locate plankton
(Wilkens et al., 2001). In sturgeons, the final stage of food

acceptance is probably accomplished by with taste and touch
sensors on the four sensory barbels, head, lips, inside and
outside of the mouth, and on the tongue. Thus, ingestion

and retention (or rejection) is probably mediated by sensors
requiring physical contact with potential food items (Kasum-
yan, 1997). Utilization of multiple non-visual sensory systems

in prey detection confers a particular competitive advantage
to sturgeon vs other benthic-feeding fishes. That is, sturgeon
can forage as effectively at night as in the day. Indeed, there
is evidence of increased GS foraging activity at night during

the winter feeding period (Wrege et al., 2011).
The GS forages in the mode of a mobile ‘benthic cruiser’

(Findeis, 1997), swimming along very close to the substrate.

When food is encountered, the highly protrusible tubular jaw
mechanism projects downward and forward (Carrol and
Wainwright, 2003). Simultaneously, the orobranchial cham-

ber is expanded as the gill covers are flared outward. The
powerful suction generated by this process draws in benthic
prey along with sediment. As in all sturgeons, the GS jaws
are toothless. Prey is ingested whole, then held in the buccal

cavity and crushed by pressing the large muscular tongue
against the roof of the mouth (Findeis, 1997; Miller, 2004).
The tongue is provided with a series of hard transverse ridges

(Boglione et al., 2006) used in trituration of ingested food.
As food is manipulated and swallowed, sediment is expelled
through the mouth and gill openings. Given the relatively

small diameter of the GS mouth opening, large prey are not
regular food items. Sturgeon are unique in having evolved
retrograde gill ventilation via an accessory respiratory shunt
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(Findeis, 1997) allowing them to ventilate the gills while the
mouth is occupied with feeding (Burggren and Randall,
1978). They do this by taking in water ‘backwards’ through
the curious crescent-shaped opening along the upper rear

margin of the gill cover. Such an adaptation enables uninter-
rupted high-intensity benthic prey intake in the GS when a
patch of prey is encountered. The GS, along with all other

sturgeon species, sharks, and certain other primitive bony
fishes, retains a spiral valve in the intestine, an ancient adap-
tation to increase residence time of food in the gut and the

absorptive area of the digestive tract.
On estuarine and nearshore winter feeding grounds, the

spatial congruence between juvenile and subadult GS with

concentrations of benthic prey (Brooks and Sulak, 2005;
Harris et al., 2005; Peterson et al., 2013) indicates an ability
to home in precisely upon prey concentrations, at least on a
local scale. The ability of adult GS to detect ghost shrimp in

deep burrows and lancelets and small benthos buried in sand
suggests the use of smell, perhaps accompanied by electrore-
ception. Lack or paucity of GS telemetry relocations over

deeper areas of Mississippi Sound (Ross et al., 2009) and
Choctawhatchee Bay (Fox et al., 2002) have been interpreted
to suggest that rapid, directed movement occurs from coastal

rivers to known shoal feeding grounds around offshore bar-
rier islands and in adjacent passes. While this may be true in
general, more recent telemetry evidence (M. Peterson,
GCRL, pers. comm., August 2016) has revealed that certain

individuals remain in Mississippi Sound for extended peri-
ods, apparently foraging there. In contrast to direct move-
ments to known feeding grounds, Edwards et al. (2003)

reported that while searching for prey in marine waters, the
tracks of adult GS plotted via acoustic telemetry approxi-
mate a L�evy search pattern (Viswanathan et al., 1996), a spe-

cial class of random walk that is particularly efficient at
exploiting randomly distributed food patches in a seascape
that lacks landmarks. That is, an individual GS heads off lin-

early along a randomly selected compass direction for a
search distance that follows a power-law probability distribu-
tion until a concentration of prey is located, then forages
randomly in place within the patch for hours to days, before

again departing in a random compass direction. The teleme-
try tracks for individual GS were remarkably similar to those
for wandering albatrosses (Viswanathan et al., 1996; Fig. 4).

Such a random-direction, scale-invariant search pattern sug-
gests no advance knowledge of where prey is located, (c.f.,
when the predator navigates directly toward prey concentra-

tions from a distant starting point). If a prey-seeking GS uses
a L�evy search pattern, it would proceed on a fundamentally
linear trajectory until one or more sensory systems detected
the presence of a patch of prey.

Although descended from freshwater Chondrostean ances-
tors (Berg, 1948; Krayushkina et al., 2001), sturgeons are
slightly hyper-osmotic relative to freshwater, but hypo-osmo-

tic relative to seawater Low salinity brackish water in estuar-
ies provides not only greater sturgeon prey densities, but
conforms most closely to GS physiology and metabolic effi-

ciency. A preference for juvenile feeding in brackish water
may reflect greater digestive efficiency (food conversion ratio
and energy absorption efficiency) in low-salinity estuarine

water (3–9 ppt) that is close to isotonic with GS internal flu-
ids (Altinok and Grizzle, 2001). However, at 20 ppt, juvenile
Adriatic Sturgeon displayed reduced food conversion effi-
ciency (McKenzie et al., 1999). Cataldi et al. (1999) found

that while 1–1.5 year old Adriatic Sturgeon could withstand
20–30 ppt salinities for up to 60 days, exposed juveniles
encountered both physiological and morphological stress,

and increased susceptibility to mortality. The example here is
instructive regarding the closely-related GS. Residence and
feeding within reduced salinity waters may be due more to

physiological preference than to absolute marine salinity
intolerance. Thus, telemetry documented (Sulak et al., 2009a,
b) that juveniles wintering in Suwannee Sound suddenly

departed to deeper, full-salinity marine water during a severe
cold spell in January 2008. When temperatures moderated
five days later, they returned to the estuary. The ability to
tolerate polyhaline salinities for short periods appears to be

adaptively advantageous relative to potential cold-event mor-
tality in shallow water.

Age and growth

Growth through early life stages

Upon hatching in the laboratory (Bardi et al., 1998) GS free
embryos were 8.30 � 0.05 mm TL and weighed
8.00 � 0.08 mg. Upon transition to the first feeding stage at
age 7–10 days (Foster et al., 1990; Bardi et al., 1998) (one

day after extrusion of the anal melanin plug), larvae will
have grown to 15–17 mm TL (Foster et al., 1990; Bardi,
1997) and a weight of 18–22 mg (Foster et al., 1990; Bardi

et al., 1998). Growth in length for wild YOY proceeds
rapidly over the first year of life, a TL of 350–450 mm being
attained by age 9–10 months, when the first downriver

migration to the estuary takes place in late January and early
February.

The ‘trophic ratchet’ growth pattern

After spending the first 9–10 months of life in freshwater

reaches of the river, YOY GS transition morphologically
and physiologically such that they can initiate feeding in
brackish water in the estuary. Upon doing so, young GS

essentially become age-1 juveniles, and initiate the anadro-
mous pattern of migration and feeding that will continue for
the rest of their lives. Thus, upon entering the estuary, age-1

fish begin winter (November-March) feeding in the estuary, a
lifelong pattern that in later years will extend into open bays
and the GOMEX as full salinity tolerance is achieved. There-
after, 5–6 months of intense winter feeding will alternate

with summer (April-October) resting and trophic dormancy
in freshwater GS rivers. Spawning fits into this same cycle
for ripe fish, with spawners undertaking upriver excursions

to spawning grounds in both spring (Sulak and Clugston,
1998) and autumn (Randall and Sulak, 2012; Sulak et al.,
2013). The annual migration pattern, with alternation

between extended periods of feeding and periods of fasting,
results in the lifelong pattern of stepwise increase in weight
(Sulak and Randall, 2002) (Fig. 26a–c). That is, despite the
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small summer losses, the individual fish gradually continues
to make annual weight gains throughout its life. The major
exception to this lifelong pattern is the periodic (probably
every 3–4 years) loss of substantially greater weight by

females upon spawning. That major weight loss upon shed-
ding the mass of eggs may take two or more years of recov-
ery before further somatic growth is evidenced (Fig. 26c).

Another exception of smaller consequence is that having
achieved a TL of 1350–1500 mm, growth in adult males
slows considerably, with both TL and weight reaching an

asymptote (Fig. 26b).
In the laboratory, under conditions of constant food avail-

ability and minimal foraging energy expenditure, GS are cap-

able of much faster growth than in the wild where food is
limiting and swimming against currents and foraging widely
to locate prey requires greater energy expenditure. Mason
et al. (1992) reared two hatchery GS in laboratory tanks

with natural substrates, good oxygenation, and dim illumina-
tion. The fish were initially fed live brine shrimp nauplii and
blackworms, then switched to homogenized live prey for

7 months, then live earthworms ad libitum for 10 months. At
age 12 months, laboratory juvenile one had grown to
719 mm TL and 1870 g, while juvenile two had grown to

634 mm TL and 1410 g. Wild GS of comparable age
12 months captured in the Suwannee River estuary in several
years had a TL range of 450–550 mm, and a weight range of
only 400–600 g (USGS-WARC, unpubl. database). At age

17 months, laboratory juvenile one had grown to 849 mm
TL and 3060 g, laboratory juvenile two to 787 mm TL and
2680 g Mason et al. (1992). In contrast, captured wild

Suwannee River GS did not achieve comparable TL and
weight until age ~36–40 months (USGS-WARC, unpubl.
database). There is a wide range in both TL and weight

among individuals in the same cohort.
Historical reports and photographs document that GS reg-

ularly attained substantially greater lengths and weights in

the 1870–1950 period than have been recorded in the last
four decades (Table 5). Alexander (1905) reported a 14 ft
(427 cm) GS weighing 602 lb (273 kg) killed by a tug boat in
the Pascagoula River in 1899. Odlund (1958) reported 200–
300 lb (91–136 kg) GS as common in early 20th Century
Suwannee River commercial catches using 8.0 in (20.3 cm)
bar mesh nets. Newspaper articles from 1897 to 1941

reported four GS weighing 265–417 lb (120–189 kg), with
the longest measuring 9 ft 6 in TL (274 cm). These large GS
were caught by anglers in the Coosa, Tallapoosa, and

Cahaba rivers of the upper Mobile/Alabama River system
(Table 5). Based on fisherman interviews and further news-
paper reports, Reynolds (1993) reported additional historical
records of GS ranging from 7 ft 11 in to 8 ft 0 in (241–
244 cm) TL and 296–370 lb (134–168 kg) weight. As late as
the 1950s, a GS weighing 209 kg (461 lb) was reported from
the Flint River, a major tributary of the Apalachicola River

(Swift et al., 1977), and another of 135 kg (297 lb) from the
Ochlockonee River (Florida Outdoors, 1959).
There has been sufficient time since state harvest bans in

the 1970s–1980s for GS to grow to sizes formerly attained.
USGS has recaptured tagged Suwannee River GS that have
been at large for as long as 26 years (potential actual ages

30–35 years) without exceeding 230 cm TL or 200 lb
(USGS-WARC, unpubl. database). The use of large mesh
nets in the early fishery apparently effectively ‘fished down’
maximum size. Size-selective harvesting (Fenberg and Roy,

2008; Christensen, 2015) typically targets large spawners
(Coleman et al., 1996), simulating natural selection favoring
maturation at a younger age and smaller size. The early com-

mercial fishery would have been selective for GS exceeding
100–150 cm TL, particularly large egg-bearing females
(which get larger than males) given the selectivity of the very

large mesh nets used in the early fishery for both meat and
caviar.
The trend in mesh size employed over time closely tracks

the trend of size reduction in GS. In the first two decades of
the fishery, nets of 8 in (20.3 cm) bar mesh were used
(Alexander, 1905; Cook, 1959), even as late as 1912 (Odlund,
1958). Later, nets of 6 in (15.2 cm) bar mesh became stan-

dard. By 1920 and thereafter average fish size had been so
reduced that nets of 4.5–5.0 in bar mesh were employed
(Florida Outdoors, 1959; Fichera, 1986) through the end of

the Florida sturgeon fishery in 1984 (Tatman, 1984; Rago,
1993). Gulf Sturgeon exceeding 200 lb (91 kg) were reported
fairly frequently in the Suwannee and Apalachicola rivers

from the early 1900s up to the 1950s–1960s (Odlund, 1958;
Fichera, 1986) (Table 5), but not subsequently. It is probably
not coincidental that the Pearl River population, with no his-
tory of an early GS commercial net fishery targeting large

adults, has uniquely retained exceptionally large individuals
(>300 lb or 136 kg) as recently as 2002 (Table 5).
Maximum TL (straight line distance, tip of snout to tip of

tail) recorded for an individual GS netted since 1972 is
239 cm, equivalent to a fish of 250 mm TL measured over
the round from the Apalachicola River (USFWS, Panama

City, FL, unpubl. data). In the Suwannee River population,
from among >13 000 net captures (1986–2013), maximum
recorded TL is 227 cm, and maximum weight 90.9 kg

(200.4 lb). Among the 9726 individuals captured primarily in
large mesh (10.2–12.7 cm bar mesh) gill nets over the same
time period, only 1.17% weighed more than 45.5 kg (100 lb).
Similarly, individuals exceeding 45.5 kg are uncommon in

sampling databases for the other natal populations. The
heaviest GS caught in scientific gill net samples since sam-
pling started in 1972 (Huff,1975) was 147.6 kg (325 lb)

227 cm TL fish from the Bogue Chitto River, LA, in 2002
(R. T. Ruth, LDWF, pers. comm.). Another Pearl River sys-
tem GS weighing 387 lb (176 kg) was captured in a shrimp

trawl in Lake Borgne, LA, by a commercial fisherman in
1978 (Fig. 29). Both of these records are truly exceptional
for captures since 1960.
Faster growth rates have been suggested for GS in the

Pearl River population (Ross et al., 2002; a) and the Yellow
River population (Berg, 2004; Berg et al., 2007), compared
with rates in other river populations. However, the period of

time when sampling took place relative to the rise or fall in
the population of a dominant year class mode can substan-
tially bias apparent growth rate data. The limited sample

sizes for pectoral fin spine ring-count ages from comparative
river length-at-age data introduce another source of bias.
Since GS older than age-0 feed in GOMEX estuaries, and
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those older than age 6–8 feed either in estuarine/marine bays

or in open GOMEX marine habitats, growth in length and
weight with age (beyond age-0) does not depend upon natal
river food resources. Winter feeding upon abundant benthic

prey in saline waters accounts for almost all somatic growth.
Accordingly, when all available weight vs length data are
plotted, there is negligible difference in growth patterns

among the various natal river GS populations. Weight-length
(TL) regressions for the several GS river populations prove
to be statistically identical. (Fig. 30).
Given the close similarity in the weight-length regressions

for all GS rivers, the relationship determined by USGS for
Log10 weight as a function of TL for Suwannee River GS
can also be generally applied to all other GS river popula-

tions. That formula (N = 13 567 captures, TL range in
mm = 82–2273 mm, weight expressed in g) is:

Log10Weight ¼ 1:4727� Log10TL� 2:302585ð Þ½ � � 6:4427

For the Pearl River, the relationships between TL and FL,
and Weight as a function of FL, have been determined by

Morrow et al. (1996), as follows:

TL mmð Þ ¼ 1:10� FL mmð Þ þ 17:1

Weight gð Þ ¼ 2:786� 10�6 FL mmð Þ3:204
h i

A second set of Pearl River weight-length formulas
(N = 110 captures, FL range 635–2057 mm), have been pro-
vided by Rogillio et al. (2001):

Weight gð Þ ¼ 2:35� 10�7 � TL mmð Þ3:454

Weight gð Þ ¼ 1:12� 10�6 � FL mmð Þ3:285

A FL from TL conversion formula is also available from

Suwannee River GS captures (N = 13 031) (USGS-WARC,
unpubl. database):

FL mmð Þ ¼ 0:8984� TL mmð Þ � 9:6971

Aging and longevity

Sturgeon species have generally been aged by counting con-

centric rings in cross-sectioned pectoral fin spines. In the GS,
Morrow et al. (1996) determined that counted rings (dark
bands) were annuli laid down in March-July (the period of

arrested growth). Huff (1975) reported the following length-
at-age relationship for Suwannee River GS using pectoral
spine ring counts, but few adults were available in his sample

from 1972 to 1973.

FL mmð Þ ¼ 369:2326�Age yearð Þ0:5284

Maximum GS age estimated by Huff from pectoral spine
rings was 42 years. A second fish was aged as 31 years. Ripe

Fig. 29. Commercial fisherman R. Kenny, with 387 lb (176 kg) Pearl
River Gulf Sturgeon caught in a shrimp trawl in Lake Borge, LA, in
1978

Fig. 30. Contrast in comparative Log10 weight (g) versus TL (mm)
for individual Gulf Sturgeon in net samples, 1986 through 2007–
2009 for six comparative river populations. For purposes of this con-
trast Yellow and Escambia sample have been combined
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adults from 1973 sampling ranged in age between 12–
26 years. For 35 Pearl River GS, Morrow et al. (1996) pro-
vided a table of mean � SD FL at age over a FL range of
378–1143 mm. Based on pectoral spine ring counts from pol-

ished thin sections, Sulak and Randall (2002) determined
length at age formulas in two formats:

TL mmð Þ ¼ 697:01 ln age yearð Þ½ � � 37:405 R2 ¼ 0:7131
� �

TL mmð Þ ¼ 565:86 ageð Þ0:4247

However, pectoral fin spine counts are unreliable beyond

approximately age 8–10, due to marginal convergence of
rings and erosion of core rings. Also, mature males tend to
slow down in increasing in length, and perhaps top out with

age. Thus, a 1500–1600 mm TL male could alternately be 10,
15, 20, or 30 years old. Females, however, continue to grow
until reaching an asymptotic TL of ~2200 mm, getting larger

and older than males. Thus, a single empirical length-at-age
curve works poorly for GS older than age 8–10. A further
problem is that double rings may sometimes be formed per
year (Sulak and Randall, 2002). These authors estimated that

only 0.5% of adults live beyond age 20 in the Suwannee
River.

Ontogenetic and seasonal migrations

Seasonal immigration and emigration in the anadromous GS

The GS is one of only three fully anadromous North Ameri-

can sturgeon species. Fully anadromous sturgeon must
migrate back and forth annually, unimpeded between river-
ine spawning habitat and marine feeding habitat to complete
the life cycle. The GS is thus an obligate estuarine/marine

feeder that cannot survive land-locked or dam-locked above
impassable barriers. Descended from freshwater Chon-
drostean ancestors, sturgeon internal physiology and repro-

duction is more akin to that of freshwater fishes. However,
some sturgeon species have adapted physiologically to toler-
ate full marine salinity. Anadromy enables exploitation of

rich and broadly distributed marine benthic prey, despite the
necessity to return to freshwater to reproduce and undergo
early development. Adults feeding in the GOMEX in winter
sometimes venture as far from their natal rivers as 180 rkm,

with fish from several natal river populations co-occurring in
the same offshore areas (Edwards et al., 2007; Vick et al.,
2016). At the same time, anadromy allows anadromous and

amphidromous or potadromous sturgeon species pairs to co-
exist in the same spawning river. In effect, such pairs parti-
tion the overall aquatic prey resource available regionally

while sharing the same natal spawning river. North Ameri-
can examples include the AS and Shortnose Sturgeon (SNS)
along the East Coast, the WS and GRS along the West

Coast, and the AS and LS in the ETZ of the St. Lawrence
River (Guilbard et al., 2007). Before the nearly complete
extirpation of sturgeon from the Mobile River system (Kuha-
jda and Rider, 2016, this volume), the GS, LS, and the Ala-

bama Sturgeon (ALS) probably co-existed as a unique
sympatric North American anadromous/potadromous triad.

The long-held seasonal paradigm for GS movements is an
early spring immigration into natal freshwater rivers (includ-
ing upriver spawning migration for mature adults), late
spring through autumn residence in freshwater (resting and

fasting), then late autumn-early winter emigration to saline
winter feeding habitats. Many tagging and telemetry studies
have confirmed this general paradigm (e.g., Huff, 1975; Woo-

ley and Crateau, 1985; Odenkirk, 1989; Hightower et al.,
2002; Edwards et al., 2007). The standard post-emigration
feeding habitat for juveniles is the low to mid-salinity estu-

ary, while subadults and adults typically occupy full salinity
GOMEX coastal marine habitat or mesohaline to polyhaline
bays and sounds. For age-1 and older GS, spring through

autumn habitat is normally the freshwater river.
However, there is considerable deviation from the accepted

seasonal movement and habitat use paradigm within a given
river population and between populations. That paradigm

provides only a general framework. Both immigration and
emigration are complex, extended phenomena, confounded
by great inter-annual variations in environmental factors, sex

and maturity differences among migrants, individual
variation in GS behavior, and infrequent large stochastic
disturbances.

Spring immigration. After wintering 4–7 months (October-

November through February-April) on marine feeding
grounds, most subadult and adult GS return to their natal
river. However, natal river fidelity is not absolute (Carr

et al., 1996b; Fox et al., 2000; Dugo et al., 2004; Heise et al.,
2004; Berg et al., 2007; Ross et al., 2009; Duncan et al.,
2011). Indeed, exploratory straying resulting in some level of

permanent translocation (below) is essential in an anadro-
mous fish species to maintain and opportunistically expand
the species range as conditions change over geological time.
Telemetry and genetic fingerprinting of immigrating and

summering GS demonstrate that a small percentage of adults
enter, explore, and often stay within a river other than their
natal river, with evidence as well of spawning in the adopted

river.

Immigration and spawning migration cues. The annual immi-
gration period from marine and estuarine waters extends
from late January through early May in the several natal riv-

ers (Huff, 1975; Wooley and Crateau, 1985; Odenkirk, 1989;
Clugston et al., 1995; Carr et al., 1996b; Foster and Clug-
ston, 1997; Fox et al., 2000; Heise et al., 2004; Havrylkoff

et al., 2012), with exceptional late returnees (Fox et al.,
2000). For ripe adults, immigration coincides with the spring
upriver spawning migration. In the Suwannee River, auto-
mated listing-post telemetry has revealed that the first retur-

nees (presumably males in spawning readiness) enter in late
January to mid-February (USGS-WARC, unpubl. telemetry
database4 ), and swim rapidly and directly to staging areas

just below upriver spawning grounds. The majority of GS,
including ripe females, return to the river in March and
April. Ripe females enter rivers in spawning readiness, i.e.,

with oocytes already in late stage vitellogenesis (Conte et al.,
1988). They may either ‘stage’ in place in the lower river for
several days, proceed to spawning grounds directly without
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major stops (Fig. 31a), or move upstream in a series of stop
and go stepwise movements. Most unripe adults, subadults,
and juveniles of both sexes settle into one of eight major sea-
sonal holding-resting areas, depicted as plateaus in telemetry

tracks (Fig. 31a–c) below the spawning grounds.
Knowledge of which factors serve as immigration and

spawning run cues remains problematic. Those most fre-

quently implicated by correlation with GS movements have
been flow and temperature. Seasonally increased current flow
or river discharge has also frequently and traditionally been

advanced as the cue for spring immigration and/or spawning
immigration, and/or onset of spawning activity in various
sturgeon species, including the GS (Chapman and Carr,

1995; Foster and Clugston, 1997; Ross et al., 2001b). Corre-
lations have been drawn between timing of river entry, initia-
tion of spawning, or peak in egg deposition with either the
peak or the descending limb of the hydrograph resulting

from the spring freshet. Pine et al. (2006) reported that the
majority of GS eggs collected in the Apalachicola River in
2006 followed increases in discharge. Scolland and Parauka

(2008) reported that the majority of GS eggs from the same
river were collected following decreases in discharge. Ross
et al. (2001b) hypothesized that high flows in early March

served as the cue for GS upstream migration in the Pasca-
goula River. However, correlation does not necessarily corre-
spond with causation. Over five consecutive telemetry study
years (1997–2001) in that river, Heise (2003) and Heise et al.

(2004) found that GS arrived on the upriver spawning
grounds at the same time every year, early April (Fig. 32),
regardless of flow conditions. They arrived in early April in

1999 ahead of the major spring freshet, and again in early
April in the low-water year of 2000, when the freshet was
barely evident (Fig. 32, arrow). Similarly, in a Chocta-

whatchee River two-year telemetry study, Fox et al. (2000)
found no clear relationship between flow and river entrance.
Indeed, since the typical natural hydrograph for most

North American rivers displays maximum flow in spring due
to snow melt and spring rains, followed by a decline, a cause
and effect relationship between hydroperiod and sturgeon
seasonal migratory and reproductive behavior would be diffi-

cult to distinguish from phenological coincidence. Thus,
regarding cueing of WS spawning in the Sacramento River,
Kohlhorst (1976) has stated: ‘While most spawning occurred

during periods of decreasing flows, this is the dominant flow
regime during the spring. There was no obvious flow thresh-
old at which spawning was initiated’. In a study of WS

spawning in the Snake River, Lepla and Chandler (2001)
found that eggs were deposited during the peak and the
descending limb of the hydrograph, as well as in drought
years with no spring freshet, and no peak in the hydrograph.

A minimum water temperature has been advanced as the
spawning initiation cue in North American sturgeon includ-
ing the LS (LeHaye et al., 1992; Bruch and Binkowski, 2002;

Bruch et al., 2016; this volume) and WS (Golder Associates
Ltd., 2010; Hildebrand et al., 2016; this volume). Accord-
ingly, river water temperature has similarly been deemed the

cue for GS spring immigration and spawning migration in a
number of studies. Cueing would operate either as a mini-
mum temperature threshold, a period of rapidly rising

Fig. 31. Acoustic telemetry tracks of adult Gulf Sturgeon ascending
to Suwannee River spawning grounds in spring 2015 (a, b) and in
autumn 2008 (c) (USGS-WARC unpubl.). Key: a = putative spring-
spawning female 29 846 entering in mid-March, spawning, dropping
down, then occupying a series of holding areas at rkm 40, 55, 63, 70,
93, 112, 145, and 200; b = putative male 29 863 entering the river in
mid-March and proceeding rapidly to upriver spawning grounds;
c = putative autumn-spawning male 6773
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temperature, or a period of convergence between GOMEX
and river temperatures. Clugston et al. (1993) found that GS
began migrating into the Suwannee River in mid to late

February as the river warmed to 16–19°C, with immigration
peaking at 20°C. Sulak and Clugston (1999) proposed a min-
imum 17°C threshold for upriver migration following river

entrance. Chapman and Carr (1995) reported that return
immigration from the GOMEX to the Suwannee River
began when river water temperature reached 14.8°C and

peaked in March and April at 17.2°C, with marine to river-
ine immigration coinciding when nearshore marine and river
water temperatures fell within 1–2°C of each other. However,
their 1986–1991 study period was characterized by a series of

cold springs. In contrast, automated telemetry data showed
that, despite January-April river mouth water temperatures
continuously remaining at 19–22°C in 2012, immigration

occurred during the normal February-April window (USGS-
WARC unpubl.). Elevated temperatures (16.5–22.0°C) pre-
vailed again in December through March 2014 without alter-

ing the timing of the main GS immigration. In the
Choctawhatchee River, Fox et al. (2000) found GS entering
the river in 1996 at 11.2–24.9°C, but in 1997 at 18.3–27.1°C.
In the Pascagoula River mouth, Heise et al. (2004) captured
returning March-April immigrants between 10.4–20.8°C.
Across all GS immigration studies, observed temperatures
have spanned a range of 10.4–27.1°C, nearly the complete

thermal tolerance range of the species. Using temperature
logging archival tags, Parkyn et al. (2007) found an annual
range of 8.1–28.5°C experienced by Suwannee River GS. In

the Pascagoula River, GS regularly experience midsummer
holding area temperature maxima of 32–33°C, with a
reported mean of 28.4°C (Heise et al., 2005). Therefore, it

appears that no particular river mouth water temperature
threshold provides a reliable cue to the timing of GS immi-
gration. Additionally, the hypothesis that immigration is
cued as river and GOMEX temperatures converge (Chapman

and Carr, 1995) is not well supported. Neither is the hypoth-
esis (Sulak and Clugston, 1999) that a minimum threshold of
17°C is a pre-requisite for upriver migration. Nonetheless,

river temperature in spring is probably still biologically
important. If it remains below the critical (undetermined)

threshold needed to trigger pre-spawning vitellogenesis in
GS, the upriver spawning migration in ripe females may be
delayed.
As putative temporal cues, both flow and temperature vary

widely from year to year, and often fluctuate erratically in
spring as well (Foster and Clugston, 1997), suggesting unreli-
ability in coordination of GS life history. The one environ-

mental factor that is absolutely reliable as a cue is day length
(photoperiod), as has been identified for the SNS (Kynard
et al., 2012). Indeed, in a PCA test of factors determining

GS arrival on spawning grounds, day length has been statis-
tically identified (Heise, 2003; Ross et al., 2004) as the first
and most dominant principal component (together with tem-

perature accounting for >95% of variation) among five habi-
tat factors evaluated (day length, temperature, stream flow,
dissolved oxygen, and depth). It is true that the GS main
spring immigration and the onset of spawning generally coin-

cide with mean ambient river temperature and flow trends,
the former increasing from a December-February minimum,
and the latter decreasing after a February-March peak. But

in the phenology of spring events, the same correlation is
true of the blooming of red maples and the departure from
Florida of sandhill cranes, neither of which species is cog-

nizant of river temperature or flow. What maples, cranes,
many other species, and probably the GS all use as their cue
to initiate spring activity is day length (photoperiod). Indeed,
in the GS, it is informative that the late March peak of

spring spawning coincides very closely with the spring Equi-
nox, while the late September onset of autumn spawning
coincides very closely with the autumnal Equinox – when

neither a remarkable thermal nor flow cue is typically evi-
dent. At the same time, and also without a notable change in
river conditions, GS residing in summer holding areas begin

to exude copious slime (Sulak and Clugston, 1999) and dis-
play a heightened swimming mode during net capture, pre-
sumably a pre-emigration staging feature. As a life history

coordinating and priming cue, photoperiod is reliable, suffi-
cient, and measurable within combined visual-cranial integra-
tion capability; GS may need no other seasonal cues.
However, inter-annual differences in environmental factors

including temperature and flow may nonetheless determine
the duration of immigration. Fleming (2013) reported that
the 2010 and 2011 Choctawhatchee River spring immigra-

tions of acoustically-tagged GS began on the same day in
both years, 3 March, but lasted only 76 days in 2010 vs
94 days in 2011. Despite a rather constant date for the onset

of annual immigration, consistent with a hypothesized pho-
toperiod cue, timing of river entrance for individual GS may
differ depending upon life stage, sex, and gonad ripeness.
Thus, Odenkirk (1989) found that small adults (presumed

males) entered the Apalachicola River in advance of large
adults (presumed females). Fox et al. (2000) reported that
male GS generally entered the Choctawhatchee River ahead

of females, beginning at a lower minimum water temperature
(11.2°C vs >15°C). Additionally, ripe GS entered the river
from March to mid-April, while non-ripe individuals entered

from March-September. Although immigration is seasonally
coordinated, net sampling and telemetry results generally
indicate that for any population there is no coordination of

Fig. 32. Gulf Sturgeon arrival at the Bouie River spawning site in
the Pascagoula River in relation to flow, temperature, and
date,1997–2001, based on first spring captures Discharge data are
from USGS gauge #2472500. Figure has been adapted from Ross
et al. (2001a, Fig. 6, courtesy of Mississippi Department of Fisheries,
Wildlife and Parks, and the Mississippi Museum of Natural Science).
Dashed arrow denotes the very low streamflow discharge in spring
2000
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movements among individuals. The same pattern has been
observed in other sturgeon species. Thus, in Dabry’s Stur-
geon Zhuang et al. (1997) observed that ripe adults neither
aggregate nor swim upstream together, but instead move

individually.
Telemetry data for Suwannee River GS (Carr et al.,

1996a,b; USGS-WARC unpubl.) show that a subset of males

(presumably ripe) arrive a month or more in advance of the
general immigration of all other fish, juveniles to adults, both
male and female, ripe and unripe. The early male run takes

place in late January through mid-February regardless of
water temperature in either the GOMEX or the Suwannee
River, which has varied from 13–22°C inter-annually, 1996–
2015 (USGS-WARC unpubl. data). Ripe males in the early
run, and ripe males entering during the peak March-April
immigration, proceed rapidly and directly to temporary hold-
ing areas near upriver spawning grounds where they remain

for as long as two months (Fig. 31b) awaiting the arrival of
females mainly in late March through mid-April. Extended
upriver residence of GS males after spring immigration was

also observed in the Choctawhatchee River by Fox et al.
(2000), although those authors found no difference by sex in
spring arrival. Nonetheless, differential onset of spring migra-

tions between ripe males and ripe females may be a common
phenomenon among sturgeon species. Indeed, an early river
entrance and/or upriver spawning run by ripe males, 2–
3 weeks ahead of the first adult females, has also been

reported in the AS (Dovel and Berggren, 1983; Van Eenen-
naam et al., 1996), LS (Cuerrier, 1966; Bruch and Bin-
kowski, 2002; Bruch et al., 2016), in the European Sturgeon

(Classen, 1944), and in the Sterlet (Holcik, 1989). After over-
wintering in the estuary, juveniles join the main GS March-
April upriver migration (Sulak et al., 2009a), but typically

ascend only to seasonal holding areas rather than to upriver
spawning reaches.
A further modifier of the basic pattern of immigration is

individual behavior. For example, three acoustically-moni-
tored GS that had overwintered in the GOMEX, and had
returned to the oligohaline Choctawhatchee River mouth in
spring, did not move upriver. Instead, they remained at the

river mouth continuously from mid-June through mid-
August (Fleming, 2013), matching an earlier and similar
report (Fox et al., 2000). Similarly, Duncan et al. (2011)

found that three telemetry-equipped adult GS spent the sum-
mer of 2006 in northeastern Escambia Bay, instead of immi-
grating upriver. Large adult GS have also been observed in

mid-summer in Suwannee Sound at the river mouth entrance
during low altitude helicopter reconnaissance (K. Sulak,
USGS-WARC, pers. comm.).

Emigration. The long-standing paradigm for GS seasonal
exodus has been that all fish, except YOY, depart to the
estuary (juveniles) or the open GOMEX (subadults and

adults) in October-November. Clugston et al. (1995) and
Foster and Clugson (1997) reported that radio-tagged GS
moved downstream in the Suwannee River in October-

November as water temperature dropped from 26°C to
17°C. Edwards et al. (2003) found that acoustically-tagged
GS left the same river in early November as river water

temperature fell below 20°C, within the temperature range
(19–21°C) also observed by Carr et al. (1996b). In the Apala-
chicola River a range of 18.5–19.0°C for emigration was
reported by Odenkirk (1989). Parauka et al. (1991) suggested

a drop in temperature below 19°C and increased flow as emi-
gration cues. In the Pascagoula River, from 1998 to 2002,
telemetry-tagged GS departed freshwater from late Septem-

ber through mid-October over a temperature range of 21–
26°C, with river exit in most years coinciding with elevated
streamflow (Heise et al., 2005). Emigration in that study

coincided with decreasing day length, decreasing water tem-
peratures, and increasing river flow. However, recent data
from remote datalogging receivers show that departure from

seasonal holding areas, emigration to estuarine and bay
waters, and subsequent movement into fully marine waters,
is complicated and variable (Grammer et al., 2015; Peterson
et al., 2016) – with no readily demonstrable relationship with

individual environmental cues. Important variables may
include individual behavior, sex and maturity, co-varying
environmental factors, differential population adaptation to

a given natal river, and unpredictable stochastic events.
Individual behavior is a key element in emigration timing.

Indeed, occasionally a certain individual or a pair of GS

does not move downriver at all, instead overwintering
upstream in the natal river. For example, Wooley and Cra-
teau (1985) reported two radio-tagged adult GS overwinter-
ing near rkm 172 (below JWLD), spending a total of 9 and

13 months, respectively, in freshwater. Similarly, Ross et al.
(2001b) reported telemetry GS overwintering in the Bouie
River in the upper Pascagoula River system, not departing

until as late as January or March. Overwintering in freshwa-
ter has also been hypothesized in the Suwannee River (A.
Huff, pers. comm., cited in Wooley and Crateau, 1985). Fur-

thermore, among those subadult and adult GS moving to the
river mouth estuary or adjacent mesohaline bay, a certain
percentage may remain in the bay or sound for an extended

period, as in Mississippi Sound (M. Peterson, GCRL, and
W. T. Slack, USACE, pers. comm.) or for the entire winter
season, not exiting into the open GOMEX, as in Chocta-
whatchee Bay (Fleming, 2013).

The typical pattern and timing of GS emigration may be
altered by stochastic events, prominently including late sum-
mer or early autumn tropical storms. Major precipitation

events rapidly and substantially raise river water level and
current velocity prompting early departure from seasonal
holding areas and from the natal river by GS. Flooding scav-

enges nutrients from riparian lowlands and swamps, agricul-

tural lands, and urban sewage plants, resulting in dissolved
oxygen crashes that apparently trigger downriver movement
by oxyphilic GS. For example, up to 73 cm of rain fell on

the Suwannee River watershed during the passage of Tropi-
cal Storm Debby on 26–27 June 2012. The upper river rose
10 m (3 m above flood stage), reaching its highest level since

1964, third highest since 1906. Dissolved oxygen measured in
the rkm 7–40 reach downriver fell progressively to a low of
2.1–2.7 mg L�1 by 16–17 July (USGS-WARC unpubl. data).

As the wave of hypoxic flood water proceeded down the
river, seven USGS remote datalogging receivers deployed
between rkm 204 to rkm 7 documented that at least 90% of
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49 acoustically-tagged GS departed holding areas and rapidly
moved downriver. Of those, 23% remained within the river
mouth (below rkm 7) while 67% departed the Suwannee
River to enter the GOMEX, with 10% remaining undetected

(M. Price, USGS, pers. comm.). One to two months after
departure, all GS GOMEX refugees returned to the Suwan-
nee River, later exiting again during the normal October-

November emigration window. However, prematurely trun-
cated river residence (i.e., early departure, 2–3 weeks ahead
of the normal mid-October emigration onset) from the Choc-

tawhatchee River to the GOMEX has been reported in
response to late September 1998 flooding from Hurricane
Georges, when river discharge rate increased from 63 cms to

2175 cms over 10 days (Parauka et al., 2001). During the
same regional storm event, 75% of acoustically-tagged GS in
the rkm 57 holding area of the Pascagoula River exited to
the GOMEX within one week (Slack et al., 1999; Heise

et al., 2005). Again, Ross et al. (2001b) observed an early
departure of a telemetry GS following late August flooding
in the same river.

Young-of-the-Year follow a different schedule for down-
river migration. After spending the first 9–10 months of life
in freshwater reaches of the Suwannee River, YOY descend

to the brackish estuary for the first time in late January
through early February, proceeding downriver at the same
time as early arrival males swim upriver.

Staging in the lower river during immigration or preceding

emigration. Staging is an extended precursor to or interrup-
tion of either GS immigration or emigration for a period of

multiple days to multiple weeks (Grammer et al., 2015).
Staging in various GS life history contexts has been docu-
mented from telemetry evidence in various rivers. During the

spring immigration in the Suwannee and Pascagoula rivers,
Carr et al. (1996b) and Ross et al. (2000) have documented
GS lower river or rivermouth staging via telemetry. Fish

entering the Choctawhatchee River may spend up to a week
in the ‘Muddy Lake’ staging area, 7.5 rkm above the river
mouth (Fig. 10) (Parauka et al., 1991). Typically, staging
during spring consists of either cessation of migration or a

series of short distance (up to ~25 rkm) up and back move-
ments within the staging area over a period of hours or days
prior to a definitive migration upriver to a holding area

(Fig. 33). It may be hypothesized that such movements serve
an olfactory probing function, in an attempt to recognize the
chemical signature of the natal river. An alternative hypothe-

sis is that a period of accommodation to freshwater is neces-
sary for certain individuals arriving from marine waters.
However, many immigrating individuals display no period of
staging, proceeding directly upriver (Fig. 31a,b). Odenkirk

(1989) observed that immigrating GS did not linger at the
saltwater – freshwater interface, but moved steadily upstream
into the Apalachicola River.

Pre-emigration staging has been observed in several GS
rivers. Odenkirk (1989) hypothesized that an extended per-
iod (multiple days) of staging may be required in emigrating

GS to allow for adjustment to saline water after spending
several months in freshwater. Such a seasonal acclimation
process in emigrating juvenile through adult stages may

recapitulate the initial ontogenetic process of physiological

and cellular accommodation to salinity at the YOY to age-1
transition in anadromous sturgeon species (Altinok, 2007;
Allen et al., 2011, 2014). The last two studies referenced
speculated that this preparatory period was stimulated by

natural photoperiod. Telemetered GS moving down the
Choctawhatchee River in mid-October stopped and staged
in ‘Muddy Lake’ for 2 weeks before emigrating into Choc-

tawhatchee Bay (Parauka et al., 2001). In the Pascagoula
River, Slack et al. (1999). Heise et al. (2005) and Grammer
et al. (2015) found that GS moved >150 rkm downriver

over 2.5–16 days in late September-early October stopping
at staging areas between rkm 38 and 24, remaining in that
reach for several weeks before exiting the river in early
November. Rogillio et al. (2001) observed that GS emigrat-

ing from the Pearl River remained in the Rigolets area, a
brackish interface between the mouth of the Pearl River
and the adjacent more saline waters of Lake Pontchartrain

and Lake Borgne (Fig. 19). In the Apalachicola River, the
deep Brothers River tributary, starting 23 rkm above the

Fig. 33. Telemetry track of an individual Gulf Sturgeon immigrating
into the Pascagoula River on 30 March, thereafter displaying up and
back river mouth staging until at least 12 April before finally ascend-
ing upriver and settling into a seasonal holding area at rkm 56 on 17
May, remaining there through 27 June (adapted from Ross et al.,
2000, Fig. 10, courtesy of Mississippi Department of Fisheries, Wild-
life and Parks, and the Mississippi Museum of Natural Science)
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river mouth (Fig. 8), serves as a pre-emigration staging area
(Wooley and Crateau, 1982, 1985; Odenkirk, 1989). The
same is true of the Cooper Basin (Fig. 12), a major GS
aggregation area adjoining the Blackwater River 14 rkm

from the river mouth (Carr, 1983; A. Kaeser, USFWS
unpubl. SSS data; N. Craft, Northwest Florida Aquatic Pre-
serves, unpubl. data). Lower river staging areas have also

been identified in the Escambia River (Craft et al., 2001;
Stewart et al., 2012). In the Yellow River, the aptly-named
‘Sturgeon Lake’ at rkm 14 may also serve as a migratory

staging area.

Upriver aggregation/staging prior to spawning and prior to

emigration. In the Suwannee River, anecdotal observations
in September in several years indicate that GS aggregate at

rkm 204, in the area of conjunction of the Withlacoochee
River tributary with the Suwannee River (Fig. 5). Although
such aggregations precede the onset of downriver emigration,

the nature of aggregation behavior is uncertain. It is now
known from acoustic telemetry (USGS-WARC unpubl. data)
that males in autumn-spawning readiness occupy this same

area for up to two months (Fig. 31c), waiting to escort arriv-
ing females to spawning grounds just upriver in the Suwan-
nee River mainstem or 6 rkm up the Withlacoochee River
(Fig. 5).

Natal river fidelity, straying, exploration, and inter-river

translocations. Generally, high recapture rates between GS
tagging years within a given river, together with genetic
determinations of river of origin, indicate a high degree of

natal river fidelity for a given GS population (Wooley and
Crateau, 1985; Stabile et al., 1996; Foster and Clugston,
1997). Accordingly, Wooley and Crateau (1985) reported a

between year recapture rate of 43%; Sulak and Clugston
(1999) a rate of 36%. It has been hypothesized that genetic
population structure within the anadromous GS is main-

tained by strong homing fidelity (Stabile et al., 1996; Wirgin
et al., 1997; Waldman and Wirgin, 1998). Stabile et al.
(1996) estimated an exchange of only 0.45 females per gener-
ation (~20–25 years) in a mtDNA genetic analysis of inter-

population gene flow between the Choctawhatchee popula-
tion and the Escambia/Yellow River complex.
On the other hand, data from tagging mark-recapture

programs and telemetry relocation studies suggest a higher
rate of inter-river translocations. Microsatellite DNA studies
(Dugo et al., 2004; Kreiser, 2012) have detected a strong

degree of genetic structure (natal river population differenti-
ation) and hence a high degree of reproductive fidelity
among river stocks. However, some individuals that stray
from their natal river systems may not remain or spawn in

the host river. This matter requires further resolution. Relo-
cation data confirm that movement of individuals from one
natal river to another via the marine corridor is a regular

feature of GS life history. For example, in an early tagging
study, Carr et al. (1996b) reported that six Apalachicola
River tagged GS were recaptured in the Suwannee and one

Suwannee River tagged GS was recaptured on the rkm 171
spawning ground below JWLD in the Apalachicola River.
The minimum distance between the two rivers is 180 km. A

coastal migration of even greater distance is evident from a
123 mm FL GS collected and tagged in the Suwannee River
in 2001 (K. Sulak, USGS, pers. comm.), recaptured in
Choctawatchee Bay in 2012, and later found dead in St.

Andrews Bay in 2014 (N. Willett, Delaware State Univ.,
pers. comm.). This is the only evidence to date of a Suwan-
nee River GS moving west of the Apalachicola River

mouth. Mark-recapture and acoustic telemetry investiga-
tions by USGS have frequently detected Apalachicola and
Ochlockonee River-tagged fish in the Suwannee River over

two decades of research (USGS-WARC unpubl. database).
Fox et al. (2000, 2002) found that a ripe male acoustically-
tagged in the Choctawhatchee River in 1997 and detected

on the spawning grounds that year, was subsequently
detected in the Escambia River in 1998, then back in the
Choctawhatchee River in 1999. Ross et al. (2002) reported a
Choctawhatchee River tagged GS was recaptured in the

Pascagoula River, and several Pascagoula River tagged GS
were recaptured in the Pearl River. Exchange both ways
between the Pearl River and Pascagoula River has been

reported earlier by Rogillio et al. (2001). Translocations
between the Pascagoula River and Yellow River, and Yel-
low River and Choctawhatchee River have been reported by

Ross et al. (2009) and Edwards et al. (2007). Berg et al.
(2007) reported that eight of 25 recaptures from among 77
GS tagged by USFWS in the Yellow River in 1993–2005,
were fish originally tagged in the Blackwater, Escambia, and

Choctawhatchee rivers, suggesting a higher rate of straying
than estimated genetically by Stabile et al. (1996). Fox et al.
(2002) also noted that the actual straying rate may be

higher than the Stabile et al. (1996) estimate. River assign-
ment by more recent molecular genetic fingerprinting sug-
gests that the admixture of GS populations within a given

river may indeed be more prevalent than earlier gene flow
estimates suggested (Dugo et al., 2002, 2004; Kreiser, 2012).
However, evidence of admixture among adults may simply

represent temporary visits away from the natal river, rather
than a permanent translocation with subsequent spawning
in a host river.
Movement into non-natal rivers has been termed stray-

ing, but exploratory excursions sometimes result in a per-
manent change in river of residence and spawning. Co-
occurrence of adult GS from several natal rivers on shared

marine feeding ground hotspots (Edwards et al., 2007; Ross
et al., 2009; Vick et al., 2016) may facilitate return migra-
tion to non-natal rivers. Permanent translocations probably

insure maintenance of genetic diversity among the GS natal
river populations, as well as maximal longitudinal spread of
the species range. They would also serve as an adaptive
hedge against sea-level changes that could merge river chan-

nels at low stands, or divide them at high stands. Tempo-
rary translocations may serve a different purpose. Thus, the
majority of Pearl River GS relocated in the Pascagoula

River appeared to be using the non-natal river only for sea-
sonal holding. The same may be true of Yellow and Escam-
bia River GS occupying the Cooper Basin holding area in

the Blackwater River. In either case, individual transloca-
tions away from the natal river reinforce observations that
a certain percentage of the population deviates from the
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norm in almost every aspect of the highly-adaptive life his-
tory of the GS.

Holding areas, congregation, and holding behavior

Sturgeon engage in an energetically-conservative life style
characterized by a distinctively poikilothermic strategy of

energy acquisition, expenditure, and conservation. They bal-
ance periods of migration and active foraging with opposing
periods of spatially limited movement and trophic dormancy.

This is particularly true for the anadromous sturgeon species,
including the GS. The period of intense migratory and feed-
ing activity spans 4–7 months, from the October-November

emigration through the February-April emigration and
spring spawning interval, or a somewhat modified version
for autumn spawners. In the GS, the period of heightened
energy expenditure and acquisition is balanced by February-

April through September-October seasonal holding and rest-
ing behavior accompanied by cessation of feeding. The onto-
genetic and annual cycles of probably all sturgeon species

are so punctuated by periods of spatially-confined holding
and energy conservation accompanied by trophic dormancy.
Dadswell (1979) reported a similar multi-month period of

intense feeding and dramatic weight gain in female SNS in
New Brunswick, Canada, countered by a winter period of
inactivity and fasting in deep holding areas. During such
intervals, energy stored in oil and muscle tissue is consumed,

growth in length is halted, and weight is lost. In the GS,
these coordinated phenomena are evident in the GS ‘trophic
ratchet’ growth pattern (Fig. 26) resulting from dramatic dif-

ferences in seasonal weight loss and gain (Fig. 27).
In some species, holding coincides with extreme low winter

temperatures, as in northern latitude populations of SNS

(Dadswell, 1979), LS (McLoed et al., 1999), and WS (Hilde-
brand et al., 1999). Correspondingly, it has been hypothe-
sized that holding in the GS represented a parallel southern

latitude response to limiting high water temperatures in sum-
mer (Mason and Clugston, 1993). Within the logistic limita-
tions of infrequent boat-tracking telemetry, GS were
described as moving only infrequently with movements typi-

cally of only 1–2 km upstream or downstream once settled
into seasonal holding areas (Wooley and Crateau, 1985;
Chapman and Carr, 1995; Clugston et al., 1995; Carr et al.,

1996b; Foster and Clugston, 1997; Heise et al., 2005) Indeed,
this logic culminated in a ‘thermal barrier hypothesis’ stating
that GS were ‘trapped’ within cool spring-water ‘thermal

refugia’ (Chapman and Carr, 1995; Carr et al., 1996b). How-
ever, using temperature-sensing radio tag telemetry, Foster
(1993) found no significant differences between temperatures
recorded from tagged fish in holding areas and ambient

water temperatures in the river mainstem. She concluded that
GS do not use areas receiving spring water as thermal refu-
gia. Furthermore, (Sulak et al., 2007) robustly tested the

‘thermal barrier hypothesis’. Testing three independent lines
of evidence, they determined that neither were GS trapped
within holding areas, nor were those holding areas signifi-

cantly cooler than adjacent reaches of the mainstem river.
Indeed, GS frequently moved from one holding area to
another during summer (Sulak et al., 2007), sometimes in

progressive hops over several months (Fig. 31c). Movements
between holding areas of as much as 54 rkm upstream and
139.5 rkm downstream were documented by sequential
within-summer net recaptures.

The ultimate post-immigration and post-spawning spring-
autumn destination for all non-YOY GS in all river popula-
tions are freshwater holding/resting areas. One or more such

areas have been identified in each natal river, plus the non-
natal Blackwater and Ochlockonee rivers. They have been
discovered and delimited based on knowledge from the early

commercial fishery, scientific net sampling surveys, radio and
acoustic telemetry, and by SSS surveys.
The single outstanding characteristic that all holding areas

have in common in all GS rivers, and indeed for all sturgeon
species, is depth. Wooley and Crateau (1985) were the first
to state that depth was the most important requirement of
‘summer dormant areas’ preferentially occupied by GS. Sub-

sequently, Foster and Clugston (1997) described ‘summer
areas’ or ‘congregation areas’ as ‘a depression about 1–2 m
deeper than the main channel.’ Morrow et al. (1996)

reported that 92% of Pearl River GS captures came from
the West Middle River, from areas characterized by deep
holes and low current velocity. Investigations of habitat

selection during periods of relative inactivity in other stur-
geon species have similarly identified depth as the key and
common factor (e.g., Haynes et al., 1978; Dadswell, 1979;
McLoed et al., 1999). Depth greater than average depth of

the river creates natural topographic pockets of reduced cur-
rent flow and reverse eddies, allowing sturgeon to conserve
energy otherwise needed to swim against the prevailing cur-

rent. Adams et al. (1997) have most eloquently captured the
rationale of energetically-adaptive sturgeon habitat use as in
their interpretation of substrate-tending behavior in the SVS.

Thus, they have written: ‘Substrate appression. . ..is likely uti-
lized by shovelnose sturgeon under natural conditions and
may enhance exploitation of low velocity microhabitats

within high velocity macrohabitats in rivers.’ Seasonal hold-
ing in deep riverbed pockets and runs for the GS may be
much the same, an adaptive escape into low velocity micro-
habitats during a period of energy conservation. Sulak et al.

(2007) have described a typical Gulf sturgeon holding area in
the Suwannee River as consisting ‘. . .of a 500–2000-m-long,
3–4-m-deep, sand-bottom run lying just below a 4–7-m-deep

scour hole that is limited downstream by a 1–2-m-deep sand
shoal.’ Stewart et al. (2012) similarly found that holding
areas in the lower Escambia River represented scour holes.

In various GS telemetry studies, by mid-summer nearly all
tagged GS have been found residing within holding areas
(e.g., Wooley and Crateau, 1985; Carr et al., 1996b; Foster
and Clugston, 1997; Heise et al., 2005). Sidescan SONAR sur-

veying (conducted continuously from rkm 140 to rkm 30
down the Suwannee River in mid-September 2015) showed
GS densely congregated within known holding areas

(Fig. 34a,b), in contrast to only scattered individuals being
found in reaches between holding areas (USFWS and USGS-
WARC unpubl. data). Sonar imagery showed that GS are

highly congregated. Within the Suwannee River holding area
adjacent to Manatee Springs (Fig. 34a), a mean density of
one individual per 17 m2 was determined from SSS imagery.
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Most holding areas appear to be of natural origin due to
geological history and hydrological sculpting of the riverbed.

However, in some cases man has intervened by damming,
diverting, dredging, and otherwise reconfiguring riverbed
morphology and thereby altering hydrography as well. Such
human reshaping has sometimes inadvertently created ener-

getic refugia conducive to sturgeon holding. Examples
include scour holes below high dams (e.g., the deep hole at
rkm 172 below the JWLD on the Apalachicola River), deep-

ened basins (e.g., the Cooper Basin timber catchment in the
Blackwater River), and excavated holes (e.g., gravel pits in
the Bouie River) beneficial to GS. Eddy zones behind river

wingdams (e.g., such structures in the Missouri River) serve
a parallel function for the SVS (Hurley et al., 1987). On the
other hand, man has alternately intervened in eliminating

natural holding areas in GS rivers, as with USACE channel
modification for vessel navigation, e.g., dredging and filling
of a 30.5 m wide channel to the uniform 2.7 m control depth
in the Apalachicola River (Bass and Cox, 1985; Wakeford,

2001). In addition to destroying natural holding habitat,
humans have also exploited GS congregations within holding
areas. Thus, the turn-of-the-20th-century commercial fishery

targeted aggregations of GS in holding areas in the Apala-
chicola, Suwannee, and Blackwater rivers (above).
In each GS natal river, and a few non-natal rivers,

researchers have identified deep holes or runs used by GS as
seasonal holding/resting areas. Some of these double as post-
immigration, pre-emigration, or pre-spawning staging areas
that serve as low-velocity energetic and physiological accom-

modation rest-stops. Telemetry has revealed that not all
holding areas are occupied every year. On the other hand,
additional deep areas not previously identified as holding

areas have begun to be occupied by the growing Suwannee
River population. This suggests that holding area habitat

availability may be an important factor in determination of
GS population carrying capacity in a given natal river.

Reproduction and spawning

Fecundity

Once a female GS achieves sexual maturity, she will continue
to spawn periodically throughout her life. Among all species

of sturgeon, no indications of female gonadal senescence
have been observed. Fecundity is positively correlated with
body mass, and thus generally increases with age, although

data are limited. For example, Parauka et al. (1991) reported
fecundities of 317 800–400 000 in two GS females of 68.1 kg
weight each, with a mean of 101–103 eggs g�1 ovary weight

(mean egg diameter 2.1 mm). Chapman et al. (1993) reported
fecundity in three sexually mature GS females as 274 680–
475 000, with a mean of 9366 eggs kg�1 body weight. Thus,
for the largest wild females (~91 kg) typically found in any

GS natal river fecundity would be >580 000 ova.

Spawning substrate choice

Balon (1975), who further refined the fish spawning guild

established by Kryzhanovsky (1949), assigns sturgeon to the
‘open substratum lithophil’ guild. This guild includes fishes,
like the GS, in which adhesive eggs are selectively deposited
on rocky substrate, without a nest or parental guarding, and

with benthic, lecithotrophic free embryos developing into
pelagic larvae. Sturgeon have typically been termed ‘broad-
cast’ spawners, a term that is somewhat misleading since eggs

are not released ad hoc into the water column nor randomly
strewn over the substrate. For example, in WS on the
Waneta spawning grounds, Pend d’Oreille River, BC, Golder

Associates Ltd. (2008) observed that eggs deposited on riv-
erbed collection mats were highly aggregated, suggesting egg
release had occurred near the river bottom. Hard substrate is

essential in order for the adhesive eggs to immediately adhere
to the substrate, and not get swept downstream. Lithophilic
spawners like the GS require clean, hard substrate (Mapes
et al., 2015) upon which to directly deposit eggs. Neither

sand nor clay substrate is satisfactory, since GS eggs would
roll and get coated with sand or silt particles, get battered,
swept downstream, and removed from essential post-hatch-

ing interstitial gravel developmental habitat.
Females are very selective regarding spawning ground

location, homing to the same short (typically <500 m long)

river reaches every year. They are also very selective in
choice of egg deposition substrate within spawning grounds.
In the upper Suwannee River, Sulak and Clugston (1998,
1999) and Sulak et al. (2013) deployed egg samplers over a

mosaic of rock, gravel, coarse sand, and fine sand substrate.
Eggs were collected only from samplers deployed on gravel
substrate. Gravel is essential to provide the interstices into

which free embryos will descend and hide immediately upon
hatching and for the next 4–5 days. Evaluating the spatial
distribution of eggs found on artificial substrate samplers,

Sulak and Clugston (1998, 1999) and Sulak et al. (2013)
determined that females chose only subareas with abundant,
clean, sub-angular, heterogeneous gravel of major dimension

Fig. 34. Sidescan SONAR imagery of Gulf Sturgeon seasonal hold-
ing areas in the Suwannee River (provided by A. Kaesar, USFWS):
(a) A 65 m long reach in the Manatee Springs holding area, center
line showing survey boat path. Scanned areas are in gray to the right
and left of the dark central SONAR void. Whitish elliptical
returns denote Gulf Sturgeon hovering above the river bottom. Dark
fish-shaped objects are the sturgeon SONAR shadows. White dots
are inserted to mark each fish SONAR return (and its matching sha-
dow) for enumeration. Mean density is one fish per 17.5 m2. Note
random orientation of individuals. (b) A 1.9 km reach of the 2.5 km
long Fanning Springs holding area, dots show ~400 Gulf Sturgeon
residing within
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2–10 cm (Fig. 35a). Immediately adjacent subareas contain-
ing gravel with sub-optimal attributes (Fig. 35b–d) were not
utilized, nor were subareas of fine to coarse sand, cobble and
boulders, or rock ledge. Optimal particle size has similarly

been found to be important in other sturgeon species. Thus,
Holcik (1989) reported that Sterlet selectively deposit eggs on
pebbles of 1–7 cm diameter, a range comparable to that of

the GS (Sulak et al., 2013). LeHaye et al.’s (1992) study
revealed elements of similarity in spawning substrate choice
between the LS and GS. These authors described spawning

habitat used by LS as comprising ‘moderately heterogeneous
substrates composed of fine to medium gravel or coarse
gravel with scattered cobbles and boulders.’ Within such

areas, LS eggs were found most frequently where mean parti-
cle size ranged between 1.70–6.45 cm.
While gravel substrate is scarce as potential spawning sub-

strate in the Suwannee River, it is abundant and ubiquitous

in some alluvial rivers like the Pearl and Pascagoula. In-
channel pit-mining in the Bouie River, Pascagoula system,
has deepened the riverbed and exposed gravel, providing

manmade staging and spawning areas for the GS (Ross
et al., 2001a; Heise et al., 2004). In the Suwannee River
gravel accumulates only where particular geological and

hydrological settings occur. Such settings include cross-chan-
nel ridges formed by upfaults, eddy zones below boulders
that retard current transportation of gravel, catchment pock-
ets eroded into a horizontal rock shelves, and the upstream

ends of mid-river islands that serve as depositional catch-
ments. The hydrographic context is important as well. Tur-
bulence and high flow velocity is required to prevent sand

from accumulating and covering gravel beds. However,

stochastic flood events can completely bury a gravel spawn-
ing ground under a thick layer of sand.

Hydrographic and water chemistry context of spawning habitat

Current velocity and turbulence. The presence of gravel, even
with optimal attributes for egg deposition, is alone inadequate
in the determination of GS spawning habitat. Hydrography

and water chemistry are probable further determining factors.
It is instructive that in the GS, all known spawning grounds
lie 91–250 rkm from the river mouth (Table 2) where an opti-
mal combination of substrate, flow and water chemistry per-

tains for egg and embryo development and survival. A high
and continuous rate of current flow (generally >1.5 m s�1)
has been observed on sturgeon spawning grounds in many

investigations. Rapid flow rate is essential (Wooley and Cra-
teau, 1985) to insure sufficient delivery of oxygen to develop-
ing embryos. Nonetheless, rapid current velocity alone may

be insufficient if flow is predominantly laminar. Turbulent
flow over the gravel bed may be required to insure adequate
oxygenation of the eggs and removal of waste CO2. Perhaps

relevant in this regard are observations that current breaks
created by boulders were features attractive to LS spawners
(LeHaye et al., 1992). On the rkm 215 gravel bed in the
Suwannee River, GS eggs were found almost exclusively on

substrate samplers (Sulak and Clugston, 1998, 1999) deployed
on the south side of the river. Acoustic Doppler Current Pro-
filing (ADCP) during the spring spawning period showed that

the south side is characterized by abundant eddies and highly
turbulent flow vs very laminar flow on the north side (Sulak
and Clugston, 1998). It can be hypothesized that turbulence is

essential to facilitate gas exchange across the egg membrane
(O2 delivery and CO2 removal) for the developing embryo in
a viscous medium. Water depth does not seem to be impor-
tant. On the rkm 215 spawning ground in the Suwannee

River, eggs have been collected on artificial substrate samplers
in both very low water (<1.5–2.0 m depth) and exceptionally
high water conditions (>10 m depth) (USGS-WARC unpubl.

data). In the Apalachicola River, Scollan and Parauka (2008)
collected eggs on samplers at depths ranging from 1.0 to
5.4 m (median depth 3.2 m).

Ionic properties of spawning site water. Divalent ion concen-

tration, pH, and conductivity may be used to identify river
reaches chemically suitable for spawning. Specific ranges in
Ca++ ion concentration and pH appear to define water opti-

mal for sturgeon spawning. Cherr and Clark (1984, 1985)
reported a pH range of 5.5–8.5 for the WS sperm acrosome
reaction, with sperm failing at higher and lower pH levels.
Optimal pH for sturgeon eggs appears to lie in the near-neutral

range (pH = 7.0) to slightly alkaline (pH < 8.0) range. In the
European Sturgeon, a close relative of the GS, Holcik (1989,
citing Ninua, 1976), reported a pH range of 7.4–7.6 on spawn-

ing grounds in the Rioni River, Republic of Georgia. Holcik
(1989) reported a range of 6.8–7.2 as optimal for Sterlet eggs,
and a range of 6.6–7.7 empirically observed for Russian Stur-

geon eggs. The actual role of pH may be indirect, determining
the concentration of dissolved Ca++ ions in river water within
spawning reaches. Calcium ions are important in mediating

Fig. 35. Gravel samples from four 1.0 m2 quadrats representing four
subareas of the Suwannee River rkm 215.5 spawning ground in 1996
(Sulak et al., 2013). Size reference is a meter stick. (a) sample from
subarea 473, were Gulf Sturgeon eggs were deposited almost exclu-
sively, (b–d) samples from subareas 474–476, not selected for egg
deposition
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the union of sturgeon gamete during fertilization (Detlaff and
Ginsburg, 1963). Conductivity is a useful, easily-measured sur-
rogate for Ca++ ionic concentration, otherwise not readily
measured in the field. Sulak and Clugston (1999) determined a

very tight positive linear correlation (R2 = 0.9481) between
Ca++ concentration and electrical conductivity in the Suwan-
nee River, which courses through calcium carbonate bedrock.

A Ca++ ion concentration range of 6–18 mg L�1 was
observed from water samples taken during egg collections
(Sulak and Clugston, 1998, 1999), corresponding to an

observed range in electrical conductivity of 40–110 lS cm�1

(Sulak and Clugston, 1999; Sulak et al., 2013). Cessation in
spawning coincided with a marked increase in conductivity.

Similarly, Parkyn et al. (2006) reported that conductivity in
the Suwannee River from March through June, spanning the
spawning interval, was lowest (90–122 lS cm�1) in April, ris-
ing rapidly in May (201–350 lS cm�1). These authors sug-

gested that decreased conductivity on spawning grounds
during the spring season may be a factor in successful GS
spawning. Fox et al. (2000) reported a conductivity range of

32–70 lS cm�1 during GS egg collections in the Chocta-
whatchee River. Scollan and Parauka (2008) reported the con-
ductivity range of 108–169 lS cm�1 during April-May egg

collections in 2008 in the Apalachicola River. In the earliest
scientific study of the GS, Huff (1975) noted that low water
hardness (due to Ca++ ions) was peculiar to upper river
reaches that he hypothesized were used for spawning (a

hypothesis subsequently confirmed). Conductivity in the low
range of 70–125 lS cm�1 has been indicated as a water chem-
istry factor of importance during spawning in other sturgeon,

including the LS (Auer, 1996) and SNS (Dadswell, 1979). It is
highly probable that a specific chemical milieu, expressed by
pH, Ca++ ion concentration, and conductivity is essential in

GS selection of locations of upper river spawning grounds.
Bull (1940) reported the ability to perceive slight changes in
pH (0.04–0.10 pH units) among 20 species of marine teleosts.

Given the apparent importance of electro-chemical properties
of river water to GS spawning, it may be hypothesized that the
electroreceptive ampullary organs are involved in spawning
grounds selection and homing.

Spawning behavior

Telemetry has determined that male GS either stage below
spawning grounds to await the arrival of ripe females, or
accompany females during the upriver ascent. Males may

make multiple ascents to spawning ground from their staging
areas (Fig. 31b), spawning several times with different
females over a period of up to six weeks. Female GS spawn
once and drop back downriver to holding areas immediately

(Fig. 31a), as has similarly been reported in the Sterlet (Hol-
cik, 1989).
Due to the dark tannic or muddy water characteristic of

GS natal rivers, and the secretive nocturnal habits of the spe-
cies, actual spawning has not been observed. However, it can
be hypothesized that mating in the GS is similar to that

observed for the LS in Wolf River, WI, which is observable
in shallow water during the daytime. Mating in LS, WS (Tri-
ton Environmental Consultants, 2004), and probably the GS

is polyandrous. Several LS males compete vigorously for
physical proximity to a female, rubbing her with the body
and snout to stimulate release of eggs, as similarly reported
in the AS by Dean (1893a). As the female releases a batch of

eggs, attending males release clouds of sperm. There is no
elaborate courtship ritual, although LS males vocalize during
mating (Bocast et al., 2014). Vocalization (serial clicks) has

also been recorded in GS aggregated in seasonal holding
areas (USGS-WARC unpubl. data), but it is unknown if GS
also utilize acoustic communication during spawning. Lateral

rubbing, snout nuzzling, and forceful prodding are typical
behaviors in courting male sturgeons, resulting in red abra-
sions in both sexes (Dean, 1893a,b; Borodin, 1925; Holcik,

1989). In the GS, males with red, bloody snouts and females
with reddish lateral abrasions have commonly been observed
in net captures just after the spring and autumn spawning
seasons (USGS-WARC unpubl. data).

Spawned eggs, embryos, and hatchling free embryos

Although unfertilized sturgeon eggs become immediately
adhesive upon contact with freshwater when spawned, Cherr
and Clark (1985) report full adhesion in WS eggs only devel-

ops within five minutes of fertilization. Sturgeon egg adhe-
sion to the substrate is reported as very strong (Markov,
1978), as also observed in the GS (Chapman et al., 1993;
Parauka, 1993). Black when deposited, fertilized GS eggs

hydrate, swell to 2.8–3.2 mm diameter, and turn brown to
gray. The animal pole rotates to the top, initially appearing
as a light-colored bullseye consisting of a polar spot sur-

rounded by 3–4 concentric rings (Detlaff et al., 1993; Plate1,
stage 2) later forming into the crescent shape of the embryo.
It appears that eggs are spawned in batches, a few thousand

at a time. Cleavage stages observed for GS eggs (embryos)
collected between 08:00–10:00 hours on Suwannee River
spawning grounds suggest that spawning occurs between

00:00–04:00 hours. Eggs (embryos) 1–2 days old become tan
in color, on day 3 before hatching they become translucent
yellow. Unfertilized eggs remain black; non-viable eggs
become clear or shriveled (Sulak and Clugston, 1998). In lab-

oratory culture of sturgeon eggs (embryos), fatal infection
with furry white Saprolegnia fungus is common (Ryder,
1890; Kynard, 1997; Holcik, 1989), including in the GS

(Parauka et al., 1991). However, this fungus has only been
observed at a very low rate of occurrence on wild-spawned
eggs (embryos) of the GS (Sulak and Clugston, 1998) or

other North American sturgeon (Kynard, 1997).
Time to hatching is temperature dependent. At typical

ambient river water temperatures on the spawning grounds
in spring (20–21°C), GS hatching occurs in ~72 h. In the lab-

oratory, Parauka et al. (1991) determined a range of 54.4–
85.5 h at temperatures of 23.0–18.4°C, respectively. Chap-
man and Carr (1995) reported a range of 15–20°C for maxi-

mum egg, embryo, and larval survival under laboratory
culture conditions, with highest embryo survival at 15°C.
That is a water temperature 1–10°C below the range reported

for wild GS egg collections from various natal rivers
(Table 4). These authors reported high egg hatching failure
and complete embryo mortality within a week at 25°C. At
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temperatures exceeding 23°C, development goes awry and
the embryo dies (F. Chapman, Univ. Florida, pers. comm.).
Actual duration until hatching depends upon a species-speci-
fic, genetically-set quantity of heat, measured in total CTU

(cumulative thermal units5 ) required for embryonic develop-
ment within the egg. The GS requires 7.5 CTU compared to
11.7 for its AS sister subspecies (Kynard and Parker, 2004).

Accordingly, the AS requires a long period until hatching,
94 h at 20°C (Dean, 1893b) to as much as 168 h at 16–19°C
(Vladykov and Greeley, 1963; Smith et al., 1980).

Documentation of spawning grounds

Spawning has been confirmed in six of seven natal rivers by
the collection of eggs on gravel beds using artificial substrate
samplers in spring. Locating spawning grounds has been
facilitated by tracking the upriver movements and furthest

upriver stopping points of adults using acoustic and radio
telemetry. The first wild spawned GS eggs were collected on
anchored floor buffer pads on gravel beds at rkms 202, 215

and 221 in the Suwannee River (Marchant and Shutters,
1996) (Table 4). Additional eggs have been collected at these
same sites, at rkms 158–162 and 209 in the Suwannee River

mainstem (Sulak and Clugston, 1998, 1999; USGS-WARC
unpubl. database), and 4 rkm up the lower reach of the
tributary Withlacoochee River (Parkyn et al., 2006) (Fig. 5).
Recent telemetry suggests the presence of another spawning

ground above rkm 235, the furthest upriver stopping point
of telemetered adults in 2016 (USGS-WARC unpubl. data).
In the Pascagoula River system, spawning has been docu-

mented by egg collections (Table 4) at rkm 250 in the Bouie
River (Fig. 16) (Slack et al., 1999; Heise et al., 2004) where
adult GS were captured every spring, 1997–2003 (Ross et al.,

2004). Spawning is also suspected to occur in the Chicka-
sawhay River tributary based on genetic sub-structure within
the population (Dugo et al., 2004) and movements of adults.

Spawning in the Yellow River has been confirmed by collec-
tion of GS eggs (Kreiser et al., 2008; W. Tate and J. Van
Vrancken, USFWS, pers. comm., 2009) (Table 4), and by
collection of three YOY (Table 6). Eggs have been collected

in the Escambia River at five sites between rkms 161–170
(Fig. 12) (Craft et al., 2001), Choctawhatchee River at five
sites between rkms 140–155 (Fig. 10) (Fox et al., 2000), and

in the Apalachicola River at three sites below the JWLD
between rkms 160–171 (Fig. 8) (Pine et al., 2006; Scollan
and Parauka (2008); J. Ziewitz, USFWS, pers. comm., 2006).

In the Pearl River, spawning grounds remain undiscovered,
and no GS eggs have been collected. However, the presence
of YOY and early juveniles among scientific samples over
the past three decades demonstrates that the river still sup-

ports a spawning population (Miranda and Jackson, 1987;
Morrow et al., 1996, 1998; Rogillio et al., 2001, 2007;
USGS-WARC, 2009, unpubl. data). No attempt has been

made to sample eggs in the Ochlockonee River.

Autumn spawning

It has now been established that a portion of the GS popula-
tion in the Suwannee River spawns in the autumn (Sulak

and Clugston, 1999; Randall and Sulak, 2012), a phe-
nomenon recently documented as well in the sibling AS
(Balazik et al., 2012; Balazik and Musick, 2015), and known
in other sturgeon species (cites in Randall and Sulak, 2012).

While autumn spawned eggs have yet to be collected in the
Suwannee River, spawning has been confirmed by telemetry
documentation of autumn upriver runs by adults (Fig. 31c),

the collection of YOY in a TL range six months out of phase
with the TL range of spring-spawned YOY, and by collec-
tion of motile sperm from males and fully vitellogenic ovu-

lated black eggs extruded from ripe females in autumn
collections. Histological examination showed that such eggs
were ready to be fertilized. That condition is evident in a

2.5 mm full-term ovulated black ovum extruded by a
1914 mm TL female upon capture, 28 October 1995 in the
Suwannee River, as shown in sagittal section in Figs. 36a, b.
The 3-layer egg membrane and micropyles had already

formed, and the ovum had already polarized (Conte et al.,
1988) with germinal vesicle having migrated to the animal
pole (= ovum in late maturity Stage IVc of Doroshov et al.,

1983) and in the process of breaking down (Fig. 36a), i.e.,
releasing nuclear material in anticipation of fertilization. It is
unknown if autumn spawning also takes place in any of the

other GS natal river populations. If so, there could be man-
agement actions to consider in controlled-flow rivers, e.g.,
the scheduling of water releases from the JWLD in the Apa-
lachicola River. Dual spring and autumn spawning is known

in other sturgeon species. Thus, dual spawning has been con-
firmed in the AS (Balazik and Musick, 2015), as earlier
reported for Dabry’s Sturgeon (Zhuang et al., 1997).

Nocturnal spawning

Spawning in the Suwannee River appears to take place noc-
turnally. Cleavage stages observed in eggs (embryos)

Fig. 36. Sagittal wax-mounted section (stained with Masson’s tri-
chrome method) through a 2.5 mm full-term black ovarian ovum
extruded by a 1914 mm TL Gulf Sturgeon female upon capture, 28
October 1995, in the Suwannee River. This female was a putative
autumn spawner, with fully vitellogenic eggs a few hours from being
spawned. Key: (a) Enlargement shows detail of 3-layer egg mem-
brane, layers labeled 1–3; (b) GV = germinal vesicle, already
migrated to the animal pole and breaking down to release nuclear
material in anticipation of fertilization; MP = egg micropyles,
YG = yolk granules. Adapted from Sulak et al. (2013)
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collected from sampler pads in early morning hours suggest
spawning occurs between midnight and 04:00 AM (Sulak
and Clugston, 1999). Nocturnal spawning may confer some
initial protection against egg predation by visual predators,

or may be just another behavioral expression of the tendency
in GS for heightened activity at night (Grammer et al.,
2015). The temperature range that has been observed during

collection of viable, developing black to yellow eggs (em-
bryos) in six natal rivers is 16–25°C (Table 4).

Effective breeding population size

Based on egg collections on Suwannee River spawning

grounds in the mid-1990s, Sulak and Clugston (1998) esti-
mated that the number of females spawning annually, i.e.,
the effective female spawning population was 80 individuals.
Using mtDNA nucleotide diversity data, Bowen and Avise

(1990) independently estimated the evolutionary effective
breeding female population size for the Suwannee and Apa-
lachicola rivers populations combined as 50. Subsequently,

Pine et al. (2001) estimated that 5% of the adult females
spawn annually. Since the Suwannee River GS population
has grown to ~10 000 by 2011–2013, the percentage of

adults has increased accordingly. Applying Pine et al.’s
(2001) percentage would yield a current Suwannee River
spawning population of 500 adults. Moreover, the popula-
tion now comprises a mix of multiple year-classes, insuring

that despite an apparent 3-year maturation cycle, substantial
numbers of mature females are available to spawn each
year.

What actually constitutes a minimum effective breeding
population size to sustain a GS population in any natal
river is unknown. Current breeding populations in the

Escambia, Pascagoula, and Pearl rivers probably number in
the tens of ripe adults annually. However, sturgeon seem to
have inherently high immunity to the negative effects of

small breeding population size. A review of published esti-
mates of minimum viable population size (MVP) for >200
sexually-reproducing vertebrate species determined a median
‘N’ of 4169 (95% CI = 3577–5129) (Traill et al., 2007).

However, such estimates do not seem to apply to extant
sturgeon populations, many of which have survived deple-
tion to a few hundred individuals. The most recent esti-

mates of net-vulnerable (generally >900 mm TL) population
abundances for all GS natal rivers, except the Suwannee
River (Table 1), are well below the median MVP and lower

95% CI reported by Traill et al. (2007). Moreover, in the
1970s through mid-1990s, the Suwannee River population
was also below the median MVP. A very instructive case
regarding the resilience and rebound potential of sturgeon

from small population size is that of the Medieval coloniza-
tion of the Baltic Sea by a very small group of AS (refer to
‘Population recovery potential section below’). That founder

group subsequently expanded into a long-lasting population
that supported a sturgeon fishery. Sturgeon populations
that have been considered extirpated have often proven

otherwise, such as the now substantially recovering AS in
several Chesapeake Bay rivers (e.g., Balazik et al., 2012;
Balazik and Musick, 2015). Thus, the prognosis for

eventual recovery of small GS natal river populations is
encouraging.

Early life history

Life history details for age-0 GS in freshwater from the free
embryo stage through first migration to the estuary (330–
450 mm TL) are generally lacking. In laboratory flow tank
experiments, Kynard and Parker (2004) reported that free
embryos do not drift during dispersal. Instead, they swim in

directed and purposeful fashion (e.g., head pointing down-
stream when swimming downstream). But they can also
maintain station and even swim upstream for brief periods.

Following adoption of a fully benthic mode, age-0 GS dis-
perse widely in the Suwannee River (Table 6). Captures dur-
ing the first 9–10 months of life display no apparent
relationship in size (TL) as a function of rkm (Fig. 37). That

is, there is no downriver trend in increasing TL as would be
predicted in a passive downstream drift model. Moreover,
capture records suggest that age-0 GS disperse widely, indi-

vidually, and randomly, using the entire freshwater reach of
the river available from Big Shoals (or further upstream dur-
ing high water) (Fig. 5) to the ETZ (~rkm 10). They disperse

not only downstream from spawning grounds as per the clas-
sical drift dispersal model for YOY of anadromous fishes,
but also as far as 54–68 rkm, respectively, above the upper-
most documented (rkm 221) or suspected (rkm 235) spawn-

ing grounds (Table 6, Fig. 5).
Collections of YOY have been sporadic in all GS rivers,

despite 40 years of sampling effort with trawls, gill nets,

traps and electrofishing (Table 6). Low density plus cryptic
and solitary habits mean that YOY are typically captured
one at a time in any sampling gear. However, Carr et al.

(1996a) reported a singular visual observation of aggregation.
Physical data accompanying YOY captures in all rivers
(Table 6) displays wide tolerances to temperature (14.2–
32.0°C), DO (1.6–8.8 mg L�1), conductivity (72–

Fig. 37. Relationship between capture location (rkm) and total
length (TL) for Gulf Sturgeon YOY in freshwater reaches of the
Suwannee River (N = 50 captures). Absence of captures between
rkm 105 and 180 is due to limitations of sampling in this shallow
reach with numerous rocky shoals (USGS-WARC unpubl. data)
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385 lS cm�1), and depth (0.2–7.5 m). Broad dispersal of GS
YOY may be an essential survival strategy when foraging
competitively in food-poor GOMEX rivers. Such an adapta-
tion enables maximal exploitation of arthropod prey occur-

ring in low density per unit area (Sulak et al., 2007) in
oligotrophic blackwater rivers like the Suwannee. Prey den-
sity on open sand habitat may limit the number of age-0 GS

that can survive to age-1. McCabe and Tracy (1994) similarly
reported that WS, larvae in the lower Columbia River dis-
perse widely, facilitating utilization of available feeding habi-

tat and minimizing competition for limited prey resources.
Except for the single report of Carr et al. (1996a), GS YOY
do not normally appear to school or aggregate. Chan et al.

(1997) reported that age-0 GS observed in aquaria avoided
contact with each other, maintaining horizontal separation
over the substrate.
Carr et al. (1996a) hypothesized that age-0 GS are specifi-

cally associated with springs or spring outflows, based upon
a singular observation downstream of the Alapaha Rise
spring run in the Suwannee River. Otherwise, there is only

one other report (by a SCUBA diver) of two or three small
(~180 mm TL) YOY occurring within 100–200 m of Mor-
rison Spring (Choctawhatchee River system) in 1972 (Rey-

nolds, 1993) (Table 6). The hypothesis of Carr et al. (1996a)
has not been substantiated by YOY captures or observations
in springs, spring runs, or spring outflows in any other natal
river. Nor have divers reported YOY (or any GS life history

stage) observed in any of the ~200 springs or spring runs dis-
charging into the Suwannee River, despite decades of snorke-
ling and sport SCUBA diving in Florida springs. Moreover,

all YOY ≥450 mm TL collected in fresh water reaches of all
natal rivers since 1974 (N = 150) have come from open river-
ine habitats, none from springs or spring runs (Table 6).

However, there is empirical evidence of association of age-0
GS with particular substrate types. The eight black-stage
YOY captured in the Suwannee and Apalachicola rivers

(Table 6) have been found in association with blackened,
decaying leaf and twig debris filling troughs in open sandy
substrate. Black body color represents effective camouflage
within such troughs. Larger bicolor-stage YOY are found on

open, unvegetated, sand shoal habitats where a counter-
shaded color pattern probably serves as effective camoflauge.
Sturgeon appear to avoid structured or vegetated habitat

(Sbikin and Bibikov, 1988; Kempinger, 1996), preferring
open sand substrate. Diver observations of LS YOY (Kem-
pinger, 1996) in the wild indicate that they lead a solitary

existence. Observations of GS YOY maintained in low num-
bers in living stream tanks on river sand substrate under sub-
dued lighting display mutual avoidance (K. Sulak, USGS,
pers. obs.).

Genetics

Genetic differentiation of GS and AS

Based on mtDNA phylogenetic analyses (Peng et al., 2007;
Krieger et al., 2008), the AS and the European Sturgeon

form an ancient basal group, the ‘sea sturgeon lineage’,
genetically distinct from all other sturgeon taxa within the
Acipenseriformes. Estimated genetic distance suggests this

group arose about 171 MYA, with the AS and European
Sturgeon separating about 58–60 MYA (Peng et al., 2007;
Ludwig et al., 2008) as sea-floor spreading pushed North
America and Europe apart. Peng et al. (2007) hypothesized

that anadromy is a basal acipenseriform condition charac-
teristic of early sturgeon, including the ancient ‘sea stur-
geon lineage’. If so, anadromy has been lost in other

sturgeon species now wholly adapted to life in lakes and
rivers.
By logical inference, the GS is also a member of the

ancient anadromous ‘sea sturgeon lineage’ since genetically it
is very close to the AS (Bowen and Avise, 1990; Avise, 1992;
Ong et al., 1996; Stabile et al., 1996; Krieger et al., 2000;

Ludwig et al., 2008). Evolution of the GS arose by two
major vicariant events: (i) Splitting of the Northern Hemi-
sphere supercontinent Laurasia to form the Atlantic Ocean,
resulting in two isolated sister species, the AS and the Euro-

pean Sturgeon, (ii) Emergence of the subtropical Florida
peninsula due to postglacial sea level lowering, vicariously
splitting the originally continuously distributed AS into iso-

lated East Coast vs Gulf Coast populations. These isolated
populations diverged over time into two reproductively iso-
lated cognate entities. A large number of such disjunct Caro-

linian temperate vs GOMEX sub-tropical cognate fish
species or subspecies pairs exist.
The present taxonomic status of the GS as a subspecies of

the AS merits reconsideration. The totality of evidence sug-

gests these cognate taxa represent genetically distinct species,
as expressed phenotypically as well in terms of differential
morphology, morphometrics, and behavior. Status of the GS

as a subspecies of the AS was originally based primarily on
differences in spleen morphology and the architecture of dor-
sal scutes (Vladykov, 1955; Vladykov and Greeley, 1963),

later supported by a more robust analysis of these and mor-
phometric characters (Wooley, 1985). When the GS was first
described, genetic data were unavailable to evaluate degree

of differentiation of the two sister taxa. Subsequently,
mtDNA studies have reported varying degrees of genetic dis-
tinction of the GS and AS (Bowen and Avise, 1990; Avise,
1992; Ong et al., 1996; Stabile et al., 1996; Krieger et al.,

2000). However, King et al. (2001) reported compelling evi-
dence of trenchant divergence in the nuclear genomes of GS
and AS:

“Allele frequencies, diversity, and average genetic distance
(0.557) suggest substantial divergence between the nuclear
genomes of A. o. oxyrinchus and A. o. desotoi, supporting
the differentiations previously documented using a mor-

phological character (Wooley, 1985) and the mitochon-
drial genome (Bowen and Avise, 1990; Ong et al., 1996;
Stabile et al., 1996). Average genetic distance between the

putative subspecies is twice to three times that observed
between populations of A. o. oxyrinchus.”

Pairwise comparisons of allele frequency distributions for
seven mDNA loci from East Coast AS populations vs from
Suwannee River GS revealed a large and statistically signif-

icant difference between the ‘subspecies’ (King et al., 2001).
Suwannee River GS were found to have significantly fewer
alleles per locus than East Coast AS (3.9 vs 6.5). The
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average genetic distance reported in the same study sepa-
rates the AS from the GS at a level (D̂ = 0.52–0.58) com-
parable to the genetic distance (mean D̂ = 0.63) separating
congeneric fish species and substantially greater than that

separating subspecies of centrarchid sunfishes (mean
D̂ = 0.17) (Avise and Smith, 1977). Similarly, within ten
genera of teleost fishes, Avise and Aquadro (1982) reported

an interspecific genetic distance mean D̂ = 0.2–0.6. The
research of Ludwig et al. (2008), combining both mtDNA
and mDNA methods, again substantiates that the GS is

markedly distinct from comparative East Coast populations
of the AS.
Further support for specific-level genetic distinction of

the GS and AS is provided by Kynard and Parker’s (2004)
report of trenchant early life history differences. Thus, free
embryos of GS have a light gray body and black tail, while
those of AS from the Hudson River have a uniform gray-

black body and tail color. Additionally, in controlled
experiments, CTU required for development differed mark-
edly for GS and AS larvae (above). Larvae of GS vs AS

also differ in foraging behavior, and downstream migration
pattern (Kynard and Parker, 2004). Unlike the bottom-
hugging larvae of the AS, the larvae of the GS routinely

forage high in the water column. Additionally, among spe-
cies of genus Acipenser that have been studied (including
the AS), the GS displays a unique extended (multi-month),
1-step downstream migration of free-larva through juvenile

stages, resulting in continuous broad dispersal along the
entire river below the spawning grounds. This is distinctly
different from the punctuated 2-step migration of age-0

AS, where free embryos initially move to a well-defined
foraging reach just below the spawning grounds (step-1),
later dispersing further downstream as YOY juveniles

(step-2). Larval coloration and developmental CTU
requirement are fixed early life history characters that
could readily be hypothesized to be genetically determined

and conservative. However, foraging behavior and down-
stream migration pattern may be more plastic, expressing
ecophenotypic adaptation to the exigency of food availabil-
ity in different rivers (Kynard and Parker, 2004). Early life

history differences add substantial weight to taxonomic dis-
tinction of AS and GS based on the original morphological
and morphometric characters. Recognition of the GS as

distinct species would be consistent with the suite of
genetic, morphological, and behavioral features that distin-
guish the GS from the AS.

Several genetic analyses have revealed fundamental geo-
graphic differentiation of the GS into distinct regional
metapopulations. Additionally, finer scale differentiation is
expressed as high natal-river fidelity among each population

comprising the larger metapopulation. In their Restriction
Fragment Length Polymorphism (RFLP) analyses of
mtDNA, Stabile et al. (1996) reported homogeneity in haplo-

type frequencies for an eastern natal river metapopulation
comprised of the Suwannee-Apalachicola-Ochlockonee river
populations. This same grouping was also resolved by King

et al. (1999) who applied multilocus mDNA genotyping to
discriminate genetic stock structure within the GS across its
geographic range. Three natural ‘management units’ (i.e.,

metapopulations with high genetic integrity) were robustly
resolved, with very little evidence of gene exchange among
the regional drainages: (i) a Suwannee-Apalachicola-
Ochlockonee rivers unit, (ii) a Yellow River unit (including

the Escambia River by inference), and (iii) a Pearl River unit
(including the Pascagoula River by inference). However, the
mtDNA study of Stabile et al. (1996) had suggested at least

four genetically-distinct geographic GS stocks, adding the
Choctawhatchee River ‘stock’ as a distinct metapopulation,
with agreement otherwise with King et al. (1999). Most

recently, Dugo et al. (2004) provided additional mDNA evi-
dence robustly supporting a split in genetic distance between
a Pearl-Pascagoula metapopulation and all Florida natal

river populations sampled (Apalachicola, Choctawhatchee,
Yellow and Escambia).

River population genetic structure

Individual-level genetic signature analyses have enabled dis-

crimination of non-natal outlier individuals captured within
host river populations, either as new immigrants or as the
offspring of an immigrant x resident spawning. Addition-

ally, recent studies have evaluated genetic substructure
among individuals sampled within a given natal river popu-
lation. In an analysis of fine-scale mDNA structure of GS
in the Pascagoula River, Dugo et al. (2004), discriminated

two genetic stocks or sub-populations within that river.
Radio telemetry has identified a second group of GS that
migrate up the Chickasawhay River tributary (Heise,

2003), 350 rkm distant from the Bouie River spawning site
(Ross et al., 2004). Combined results suggest spawning
probably also occurs in the Chickasawhay River (Dugo

et al., 2004).
Miracle (1993) assessed mtDNA control region d-loop

genetic sequence and length variation within the Suwannee

River GS population. This study reported 100% sequence
homology, indicating no evidence of within-river differentia-
tion, i.e., no genetically distinct spawning sub-populations.
More recently, however, mDNA results indicate the existence

of two sub-populations within the overall Suwannee-
Ochlockonee population (Kreiser, 2012). It may be hypothe-
sized that genetic differentiation here corresponds to separate

spring-spawning vs fall-spawning groups.

Population impacts and recovery potential

Anthropogenic impacts upon the GS

The list of major human impacts upon the GS is essentially
the same long, much-published list for all North American

sturgeon species. Attention to selected impacts, such as
bycatch, has been given above. In addition to the established
list, emerging threats and impacts for the GS include: nitrifi-

cation of rivers; massive filamentous algal blooms, hypoxia,
and toxicity accompanying nitrification; reductions in river
flows and levels due to agricultural and industrial groundwa-

ter withdrawals; sea-level rise resulting in salinization of
oligohaline-mesohaline juvenile estuarine feeding habitat; and
sturgeon-boat collisions. From the established list, the next
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topic (below) deserves special consideration as perhaps the
main obstacle to GS recovery in the Pearl River and perhaps
the Apalachicola River.

Navigation and hydropower projects – dams, sills, impoundments, and

channel reconfigurations

Secor et al. (2002) have astutely observed that there are two
demographic categories of sturgeon populations: ‘. . .those
that retain reliable or at least periodic natural recruitment
and those that do not.’ However, for GS a third category
needs to be added: populations that reproduce periodically

with abundant early juveniles, but which display poor sur-
vival in subadult and young adult life history stages. Thus,
the fundamental dichotomy among GS populations is

between the first and third categories, as displayed in annual
mean natural mortality estimates (determined via open mod-
els or exponential decay rate) for the Suwannee, Yellow and
Choctawhatchee river populations (11–17%) vs those of the

Apalachicola and Pearl populations (33–40.5%), and possi-
bly the Escambia and Pascagoula (Table 1). The first three
rivers are unimpounded and minimally engineered, providing

migratory and YOY access to upriver spawning and develop-
mental habitat well beyond rkm 200–250. Lack of impound-
ments also provides unimpeded delivery of freshwater to the

juvenile estuarine feeding grounds. Furthermore, isolated
deep holes and pools remain intact and available as spring-
autumn holding and resting habitats in middle and lower

river reaches.
Over the 25-years post-harvest-ban interval, vigorous pop-

ulation rebound is evident at least in the well-studied Suwan-
nee GS population (Table 1). In the Apalachicola and Pearl

rivers, spawning grounds and YOY nursery/feeding habitat
are confined to the unimpounded reaches below the JWLD,
and the Bogue Chitto and Pools Bluff sills, respectively. This

represents a loss of 78% of historical GS habitat in the Apa-
lachicola/Chattahoochee/Flint River system (Zehfuss et al.,
1999), and probably even greater loss in the Pearl/Bogue

Chitto River system. Moreover, both systems have been
dredged and otherwise highly altered by channelization and
canals constructed for navigation purposes. Accordingly,
many low velocity deep holes, rock platforms, and oxbows,

resting habitats important to GS, have been eliminated.
Accordingly, the fundamental dichotomy in recovery status
and potential of GS populations appears to relate not to

inherent GS life history failures or genetic diversity bottle-
necks, but to loss of critical habitat following human re-engi-
neering of these rivers (Wooley and Crateau, 1985). The

extreme result of anthropomorphic change to a historical GS
natal river population has been realized in the Mobile/
Alabama/Tombigbee river system. A 1902 commercial land-

ing of 100 000 lb (45 359 kg) of GS and 5000 lb of GS
caviar reported by Alexander (1905) confirms that a large
GS spawning population formerly inhabited that system.
Multiple historical reports also confirm the use of far upriver

habitat (>300–400 rkm from the Mobile River mouth) by
large sturgeons (in the Coosa, Cahaba, Tallapoosa, and
Black Warrior tributaries) (Table 5). Individuals weighing

61–189 kg occurring far upriver were probably engaged in

spawning runs. But fragmentation of the Mobile River sys-
tem by multiple dams starting in the late 1800s, culminating
with the current set of 17 high dams, has resulted in a total
loss of GS habitat above the lowermost (Coffeeville and Clai-

borne) dams. Moreover, in the reaches below those two
dams the riverbed has been so dredged down that almost no
vertical gradient exists along the 220–227 rkm of the Mobile

River (Randall et al., 2013). Compared with the river reaches
actually used by or available to GS in other rivers (for exam-
ple, the 171 rkm reach below the JWLD dam in the Apala-

chicola River), the Mobile River system would seem to have
sufficient unimpounded reach to the mouth to support a GS
spawning population. However, the low gradient may equate

to seasonally low attraction flow and accompanying low dis-
solved oxygen, or to insufficient gradient to provide for sort-
ing of gravel to build and maintain spawning reefs.
Together, such conditions resulting from human habitat

modifications may synergistically interact to prevent GS
immigration and spawning.
Although dam removal to restore sturgeon access to river-

ine spawning and nursery habitat is ongoing for some North
American sturgeon species, no dams impacting the GS have
yet been removed. Neither have sturgeon fishways have been

installed on any impounded GOMEX river which currently
supports or formerly supported a GS population.

Stochastic natural impacts

A fundamentally unstudied area of natural impacts is that of
major stochastic events. Mass GS mortalities have been

reported following hurricanes and tropical storms, and red
tides. However, given priority in disaster response to human
needs, counts of dead GS per event have typically not been

accomplished. Large adult GS are frequently reported as
riverine, estuarine, or coastal mortalities during such events
in the Pearl and Pascagoula populations, suggesting differen-

tially greater impact upon the effective spawning populations.
However, this may be an artifact of greater visual detectabil-
ity of large carcasses. Nonetheless, particularly for the west-
ernmost GS river populations subject to more frequent

major storm events, periodic mass mortalities may essentially
reset the population recovery clock by stochastically reducing
the spawning pool (Rudd et al., 2014). Recovery potential

models and population management recovery targets will
need to take into account the frequency and magnitude of
major stochastic mortality.

Population recovery potential

The encouraging news for depleted river populations of the

GS (and other sturgeons) comes from a historical coloniza-
tion event forensically documented for the closely-related
AS. Genetic diversity evidence indicates that a very small AS

founder group was sufficient to establish a viable population
in the Baltic Sea in the Middle Ages. That is, mtDNA and
molecular DNA investigations (Ludwig et al., 2008) have

determined that a group of only approximately 20 AS indi-
viduals from Canada made a single colonization excursion to
Europe approximately 1200 years ago (Ludwig et al., 2002).
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That event resulted in establishment of a self-sustaining and
thriving AS population that supported a sturgeon fishery
well into the early 20th Century before it was extirpated by
human impacts. Ludwig et al. (2008) concluded that beyond

any first generation bottleneck of the small founder popula-
tion, given that a single female can produce a huge number
of progeny, a sturgeon population can thereafter increase

dramatically if the environment is suitable. Moreover, stur-
geon polyploidy provides mutiple-allele diversity (i.e., intra-
individual genetic variation) at a given gene locus, represent-

ing a unique hedge against small-population genetic diversity
bottlenecks (Krieger et al., 2006). Thus, recovery of a highly
depleted GS natal river population may be possible starting

from a very small remnant population. This also suggests
that transplanting a small number of sexually mature adult
sturgeons would be a much more viable and rapid human-
manipulation recovery strategy than the release of large

numbers of highly vulnerable hatchery fingerlings. Such fin-
gerlings face a minimum of 12 years period to attain sexual
maturity in females (Huff, 1975).

The single most effective action taken to conserve and
restore the GS has been cessation of direct net harvest of
sturgeon in Florida, Alabama, Mississippi, and Louisiana.

Total net bans or gill net bans in the first three states have
also helped eliminate incidental bycatch in other fisheries.
Protection of adult spawners has enabled strong recovery in
the Suwannee River and stabilized GS populations in the

Apalachicola, Yellow, and Choctawhatchee rivers. Factors
inhibiting rebound in the Escambia, Pascagoula, and Pearl
rivers remain either unidentified or unquantified.

Controlled propagation as a recovery option

Hatchery rearing of fishes for replenishment of depleted fish-
ery stocks or for introduction of ‘desirable’ species into non-
native rivers has had a long history in the U.S., as does rear-

ing for commercial aquaculture purposes. As early as 1888,
with commercial fishing in the Delaware River rapidly deci-
mating the wild AS population (Smith, 1914), the U.S. Fish
Commission began experimental culture of sturgeon (Ryder,

1890). Artificial propagation of the GS began in 1989 with
river-side spawning on the lower Suwannee River (Parauka
et al., 1991; Parauka, 1993) as a cooperative endeavor

between the USFWS and the University of Florida (UF).
Culture operations were subsequently moved to the USFWS
laboratory in Gainesville and continued through 1999 by

university researchers. The original objective was to develop
the technology in order to be prepared to undertake supple-
mentation of depleted wild GS populations in natal rivers,
should such action be deemed necessary (USFWS, GSMFC

and NMFS, 1995). Researchers at UF supported implemen-
tation of as artificial propagation program for GS popula-
tion augmentation, contending that the Suwannee River

population was not increasing (Chapman et al., 1997), with
other river populations being even more seriously depleted.
However, a secondary objective emerged as UF scientists

and the State of Florida (under the auspices of the Depart-
ment of Environmental Protection, later the Department of
Agriculture and Consumer Affairs) shifted from GS

conservation aquaculture to parallel development of commer-
cial sturgeon aquaculture for meat and caviar (Chapman
et al., 1993; Chapman and Lazur, 1998). The State created a
‘Florida Sturgeon Production Working Group’ charged with

preparation of an ‘Implementation Plan for the Commercial
Culture and Conservation of Native Sturgeon in Florida’
(FDEP, 1999). The Florida Legislature passed sturgeon

aquaculture enabling legislation (Florida Statutes, 1998).
However, concerns had been raised regarding multiple risks
accompanying hatchery culture and stocking into the wild,

including reducing the effective breeding size of small GS
populations by mining of wild adults as hatchery brood-
stock, diminishing genetic diversity resulting from artificial

selection in the laboratory, swamping and eventual loss of
wild alleles upon stocking large numbers of hatchery GS into
wild populations, potential disease transfer from the cultured
fish to wild fish, etc. Relative to such risks, the GS Recovery

Plan committee (USFWS, GSMFC and NMFS, 1995) had
already determined that ‘. . .stocking should be secondary to
other recovery efforts that identify essential habitats and

emphasize habitat restoration.’ Similarly, Tringali and Bert
(1998) and Morrow et al. (1998) had recommended against
stocking of hatchery GS in the Suwannee and Pearl rivers,

respectively, due to the risk of loss of genetic diversity in the
wild population and depletion of wild breeding adults. In a
multi-species evaluation of genetic population structure,
including the AS and GS, Avise (1992) similarly emphasized

the loss of genetic diversity that accompanies stocking pro-
grams. Such concerns and cautions led to convening of a
sturgeon culture risk assessment workshop in Florida in 2000

(Metcalf and Zajicek, 2001). In response, the State of Florida
sponsored research into wild GS population viability (relative
to the risks of GS mining to provide hatchery broodstock)

conducted by Pine et al. (2001). These authors concluded
that even a modest increase in adult mortality rate (simulated
by removal from the population of adult females as hatchery

broodstock) would be detrimental to recovery of the wild
Suwannee River population. They advised against any
exploitation of wild adults for use as hatchery broodstock.
Taken together, the multiple risks to wild native GS from

hatchery rearing and supplementation were deemed pro-
hibitive. Accordingly, all further development of commercial
GS aquaculture was halted in Florida. The focus then shifted

to rearing of non-indigenous species, primarily Russian Stur-
geon, Siberian Sturgeon, Sterlet, and viable hybrids like
Bester. Currently there are a small number of experimental

and commercial sturgeon aquaculture farms operational in
Florida, producing both meat and caviar.
Although GS artificial propagation intended for supple-

mentary stocking was discontinued, the rearing program did

provide specimens used to conduct laboratory investigations
into reproduction, early life history, feeding and nutrition,
physiology, and the viability of hatchery fingerlings released

into a natal river. In the course of collaborative USFWS and
UF early experimental Suwannee River GS culture, an excess
of cultured fingerlings was produced in 1992. An experimen-

tal release of 1192 hatchery-reared, individually Passive Inte-
grated Transponder (PIT) tagged, 220-day old (29–337 mm
TL) GS was undertaken in 1992 to evaluate comparative
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survival rates of cultured GS vs wild 1992 cohort GS, and
comparative growth rates. A 19-year follow-up recapture
investigation (Sulak et al., 2014) found that hatchery GS per-
formed poorly with a marked decline in recapture rate over

time compared to their wild counterparts. Annual recapture
rate of hatchery Gulf sturgeon dropped markedly from 1993
through 2011. Additionally, hatchery fish growth rates were

significantly lower than those of wild GS through age
3000 days. Finally, mortality rate estimates for the 19-year
period (1993–2011) were 26.7% for hatchery fish vs 11.2%

for their wild counterparts. At the hatchery GS rate of mor-
tality, compounded over the minimum 12-years span to
female sexual maturity (Huff, 1975), few hatchery fish would

have survived to contribute to the adult spawning popula-
tion.
Aside from the Suwannee River release experiment, there

has been only two other substantive stocking of hatchery GS

into the wild. The FWRI conducted an experimental release
of 46 acoustically-tagged, hatchery-reared 2-year old juvenile
GS (mean TL 877 mm, progeny of Suwannee River parents)

into the Hillsborough River in 2000–2001 both above and
below the dam at rkm 16. These fish were equipped with
acoustic tags. The objective was to evaluate survival and thus

the potential for establishing a sustaining GS population in
the Tampa Bay system via stocking (Gainesville Sun, 2000;
Neidig et al., 2002). A small number (unspecified) of released
GS were acoustically detected through 2001 (Florida Fish

and Wildlife Conservation Commission, 2016), but no fur-
ther results were subsequently published.
A second release of eleven hatchery-reared sterilized juve-

niles (811–1281 mm TL, progeny of Suwannee River parents)
with radio telemetry tags was conducted in 2002 in the Apa-
lachicola River system to assess GS habitat use, movements,

and potential passage through the JWLD. Three were
released in the river immediately below the dam, eight were
released into the Flint or Chattahoochee rivers above the

Lake Seminole reservoir behind the dam (USFWS, 2002;
Weller, 2002; Bakal et al., 2003), and an additional five wild
Apalachicola River GS (990–1610 mm TL) were telemetry
tagged and released below the dam. The main outcome was

that six of the GS released into Lake Seminole passed down-
stream through the JWLD lock within 8–83 days of release,
while two stationary tags in the reservoir suggest the remain-

ing two died (USFWS, 2002; Weller, 2002).

Learning

Observations of notable behaviors in the GS and other stur-
geon species suggest social facilitation or learning, as well as
great behavioral plasticity. For example, Holcik (1989) has

reported that some immature Sterlet accompany sexually
mature adults to upriver spawning grounds. Accordingly, the
hypothesis that sturgeon navigate to spawning grounds via

olfaction, based on the example of anadromous salmonids,
may not be entirely correct. The same phenomenon, juveniles
accompanying spawning adults to far upriver spawning

grounds, was indicated from early GS telemetry (Huff, 1975;
Wooley and Crateau, 1982). Similarly, ‘test spawning’ runs
among non-ripe adults has been reported in GRS (Webb and

Erickson, 2007). More definitive confirmation of GS juvenile
false spawning runs came in 2014 and 2015 from four
Suwannee River acoustically-tagged ~3-years old juvenile GS
(USGS-WARC unpubl. telemetry database). In 2014, two

juveniles (712 and 782 mm TL when tagged in 2013) mim-
icked a fall spawning run, ascending to the rkm 200 pre-
spawning staging area in late July. One remained there

8 days into early August, typifying ripe male behavior but
without evidence of further ascents to the rkm 202–235
spawning grounds. The second juvenile arrived at rkm 200,

then immediately and rapidly dropped back down to the
vicinity of the rkm 93 holding area, approximating spawning
female behavior. In 2015, two juveniles (595 and 704 mm TL

when tagged in 2014) mimicked a spring spawning run,
ascending to the rkm 160 spawning ground area in late
March, both remaining in that vicinity for 2–4 weeks. Such
juvenile behavior suggests learning of staging and spawning

grounds locations by moving at the same time as and poten-
tially in company of actual adult spawners.
Learning in the form of net avoidance by previously

tagged individuals has been observed by several GS research-
ers (e.g., F. Parauka, USFWS, pers. comm.). It is truly
exceptional for any individual GS netted and tagged in the

Suwannee River to be recaptured within the same season
within the same year – even within a heavily sampled holding
area (K. Sulak, USGS, pers. comm.). Repeat netting in a
given area within the same day typically follows a pattern of

rapidly diminishing captures that may persist for several days
to weeks. This response among tagged GS is so prevalent
that NOAA and USFWS have abandoned Catch-Per-Unit-

Effort (CPUE) as a realistic metric in quantifying GS during
net sampling.
Life history plasticity, individualistic behavior, and

intrapopulation variability are recurring adaptive themes in
sturgeon species. With respect to any life history theme, there
is always a small percentage of GS behaving differently from

the majority of the population. This may simply reflect expres-
sion of genetically-based variation among individuals (Stelzer
et al., 2008; Hammerschlag-Peyer and Layman, 2010), or it
may demonstrate learning. Either way, it suggests a high

degree of behavioral and habitat adaptability in sturgeons, a
probable explanation of their extraordinary persistence over
150 million years despite limited deviation from the sturgeon

morphological plan. Examples of individual, group, or popu-
lation plasticity are frequent in the GS (above), as in WS
(Hildebrand et al., 2016; this volume), challenging accepted

life history paradigms. Departure from the normal pattern of
juvenile feeding in the estuary being confined to winter
months (October to April) has been observed in years of unu-
sual age-1 to age-2 juvenile abundance. Thus, juvenile GS gill-

net captures were frequent in the Suwannee River mouth estu-
ary in the summers of 1993 and 1994, where they atypically
continued to reside, feed, and gain weight (USFWS, J. Clug-

ston, pers. comm; USGS-WARC database). Residence in the
estuary falsified the hypothesis that GS must move to fresh-
water holding areas to escape high summer water tempera-

tures in the estuary. It also falsified the hypothesis that high
summer temperatures preclude feeding. Individuals recaptured

one or more times within summer demonstrated substantial
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weight gains. Even GS early life history stages display individ-
uality in habitat selection. Thus, in laboratory experiments
Chan et al. (1997) reported that early YOY (75–148 mm TL)
displayed mixed preferences for velocity regimes under high

flow conditions.

Jumping behavior

All sturgeon are physostomes, retaining the primitive pneu-
matic duct connecting the swimbladder to the esophagus. In

freshwater environments, where depth is generally much
<150 m, a physostomous swimbladder is an effective mecha-
nism for controlling buoyancy and depth (altitude above

substate) when swimming or hovering in midwater. Gas lost
either by diffusion through the swimbladder wall, or via the
pneumatic duct must be replenished by returning to the sur-
face from depth. Thus, the GS and all other Acipenseri-

formes, must periodically return to the surface to gulp air.
Rapid vertical ascents to the surface, potentially resulting

in breaching, have been reported in telemetry-tagged Chinese

Sturgeon (Watanabe et al., 2008), GRS Erickson and High-
tower, 2007), AS (Taylor et al., 2016), and GS (N. Whitney,
Mote Marine Laboratory, pers. comm.). Jumping in the GS

is well-known and has been frequently reported (Reynolds,
1993; Sulak et al., 2002). Additionally, GS have also been
observed to ‘porpoise’ breaking the surface of the water with
the head only (Slack et al., 1999). Jumping has been

observed in many of the world’s sturgeon and paddlefish spe-
cies. Catesby (1731) provided one of the earliest and the
most eloquent descriptions of jumping in North American

sturgeon:

“. . .in May, June and July, the rivers [Savannah River]
abound with them [AS], at which time it is surprising,
though very common to see such large fish elated in the

air, by their leaping some yards out of the water; this they
do in an erect posture, and fall on their sides, which
repeated percussions are loudly heard some miles distance

in still evenings; it is also by this leaping action that many
of them are taken, for as some particular parts of the riv-
ers afford them most food, to those places they resort in

greater plenty. Here the inhabitants (as the Indians taught
them) place their canoes and boats, that when the stur-
geon leap, these boats and canoes may receive them at

their fall. It is dangerous passing over these leaping holes,
as they are called, many a canoe, and small boat having
been overset by the fall of a sturgeon into it.”

Catesby’s description applies quite well to that observed in
the GS.
Jumping is most frequently observed when GS are congre-

gated within seasonal holding areas. It may be hypothesized
that the primary purpose for jumping and breaching is to
come to the surface to replenish swimbladder gas. Saunders

(1953) found that the swimbladder gas of freshwater physos-
tomes in deep water contains an excess of nitrogen gas (up
to 94% vs atmospheric content of 78%). This implies that

metabolically-active oxygen and carbon dioxide are lost into
the tissues by diffusion. In the GS, swimbladder gas thus lost
can only be replaced by swallowing air at the surface.

Jumping facilitates recompression during a rapid power des-
cent upon re-entry.
Jumping also generates a loud splash sound with a charac-

teristic sonogram signature (Sulak et al., 2002). Additionally,

it is now known from further underwater acoustic recording
that the GS produces endogenous click sounds with a highly
characteristic acoustic signature when congregated in holding

areas (C. Phillips, USFWS and K. Sulak, USGS-WARC,
pers. comm.). It can be hypothesized that GS also utilize
jumping secondarily to contribute the splash sound to a ser-

ies of clicks to form a patterned acoustic signal used in
group cohesion. The splash sound as a form of acoustic com-
munication was originally proposed by S. Carr (CCC, pers.

comm. to USFWS, 1986).

Synopsis of key management actions regarding protection and

recovery of GS populations

A detailed chronological listing of all federal, regional, state,
university, and NGO investigations and management actions

regarding the GS through 1995 is provided in the GS Recov-
ery Plan (USFWS, GSMFC and NMFS, 1995). The brief
narrative that follows summarizes key actions taken through

2015, as well as pending actions.
By the early 1900s all GS populations that had sustained

commercial fishing had been seriously depleted. However,
small scale commercial and recreational fisheries continued

through the early 1970s to mid-1980s. Brief flourishes
occurred roughly every two decades (one GS generation
span) as populations rebounded briefly before again declin-

ing (e.g., in the Suwannee River in the 1960s). No protec-
tions were enacted for GS populations until 1972 when
Alabama became the first state to impose a complete GS

harvest ban (ADCNR, 1972), followed by Mississippi in
1974 (Mississippi Legislature, 1974), Florida in 1984 (Florida
Legislature, 1984), and finally Louisiana in 1990 (Louisiana

Legislature, 1990, 1993). Additionally, protection against
bycatch was provided in 1994 in Florida by a ban on all fish-
ing with nets larger than 500 ft2 in area, effectively ending
most commercial trawl, seine, and gill net fisheries. Addi-

tional protection against bycatch came with bans on the use
of entanglement nets in Florida and Mississippi (still legal
however in Alabama and Louisiana).

Anticipating the harvest ban, the State of Florida had
sponsored a holistic GS life history study of the Suwannee
River population in 1972–1973 (Huff, 1975), with catches

provided by a contracted commercial fisherman. Subse-
quently, the CCC sponsored a mark-recapture population
abundance study from 1976 to 1981 (Carr, 1983). Concur-
rently, the USFWS initiated mark-recapture netting in the

Apalachicola River in 1979, and telemetry investigations of
migrations thereafter. Finally, in advance of the harvest ban,
the last commercial GS fisherman in the Suwannee River

was contracted by CCC in 1981–1984 to provide gill net
catch data on sturgeon abundance, size, maturity and food
habits (Tatman, 1982, 1983, 1984). After cessation of GS

fishing, the CCC continued to sponsor multi-purpose GS
research in the Suwannee River through the early 1990s, in
conjunction with UF. The USFWS embarked upon long-
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term mark-recapture, artificial rearing, migration, and
spawning site studies beginning in 1986.
The Gulf States Marine Fisheries Commission (GSMFC)

developed an interjurisdictional plan for GS management in

1990, a prelude to the 1991 ESA listing of the GS as a
threatened species (with USFWS and National Oceanic and
Atmospheric Agency, NOAA, given shared ESA responsibil-

ity), and to the collaboratively formulated 1995 GS Recov-
ery Plan (USFWS, GSMFC and NMFS, 1995). Research
coordination among federal and state agencies and research-

ers began in earnest in 1998 when USFWS hosted the first
interagency workshop on GS science, conservation, manage-
ment, and recovery at Mississippi Gulf Coast Community

College, Gulfport, MS. This workshop has continued every
year subsequently, formalized as the annual Gulf Sturgeon
Recovery Workshop in 2000. It has become the main forum
for GS research collaboration, cooperation, and planning

across the species range, successfully achieving facile cooper-
ation, collaboration, and data sharing among all concerned
entities, including NGOs. As required under ESA provisions,

GS critical habitat was defined in 2003 (USFWS and
NOAA, 2003). Beginning approximately in 2008, NOAA
began to consolidate GS mark-recapture data from all seven

natal river populations into a common standardized central
database. In 2009 USFWS and NMFS jointly undertook
and published a ‘5-year review’ (USFWS and NMFS, 2009)
of progress according to recovery priorities specified in the

1995 Recovery Plan. GS researchers formalized a relation-
ship with the ‘Integrated Tracking of Aquatic Animals in
the Gulf of Mexico’ telemetry network (iTag) in 2014 to pro-

mote reporting and sharing of acoustic telemetry relocation
data via a common FWC-maintained interactive database.
Currently, the GS Recovery Plan is undergoing revision.

Research objectives and methodologies will be prioritized.
Management and recovery actions will be reformulated based
upon scientific knowledge gained since 1995, including the tra-

jectories determined for individual natal river meta-popula-
tions across the subspecies range. The subspecies was listed as
one overall population for ESA purposes, without delineation
of ‘Distinct Population Segments’ (DPSs). However, based on

differential mortality rates estimated among the several GS
natal river populations, Rudd et al. (2014) have recommended
that the GS needs to be managed instead on a river-specific

basis. Differential mortality rates find a general equivalence in
the well-established pattern of genetic differentiation of regio-
nal metapopulations (genetically related groups of river-speci-

fic populations). In the original plan, a potential de-listing
date of 2023 was established, based upon the status of the
overall species population. Criteria for de-listing will be re-
evaluated in the forthcoming revised GS Recovery Plan.

Based upon current evidence of genetic differentiation and
geographic separation of GS metapopulations, consideration
of designation of DPSs might be an option to enable potential

regional delisting on a metapopulation basis.

Gulf Sturgeon research priorities

The following research priorities have been identified by the
chapter lead author alone (apart from the overall co-author

group) to identify critical life history knowledge gaps across
all of the natal river populations, among a much larger
host of topics remaining to be explored. Emphasis is on
whole fish and whole population life history knowledge

gaps. Many more priority topics need to be explored at the
organ, tissue, cellular, and physiological levels – a matter
beyond the scope of this list. The order below does not

equate to relative order of research priority. All topics are
deemed equally important.

(1) Empirical testing of factors hypothesized to determine

GS population carrying capacity in a given natal river
and its estuary, rather than relying on models based on
multiple non-objective assumptions.

(2) Applying periodic SSS to efficient and rapid whole river

enumeration of subadult and adult population abun-
dance, supplanting time-consuming, labor-intensive net
census methods that yield estimates with limited river

coverage and high inherent variance.
(3) Monitoring expansion of and shifts in habitat use

(spawning areas, holding areas, winter feeding areas) as

depleted populations recover.
(4) Monitoring out-migration to other river systems as

depleted populations recover.
(5) Conducting laboratory experiments to determine the

tolerance ranges and optimal ranges in pH and divalent
ion (Ca++ and/or Mg++) concentrations for GS
gametes, embryos, and yolksac larvae.

(6) Determining the habitat attributes critical to GS choice
of holding and staging areas, potentially as a guide to
restoration of such areas.

(7) Determining the behavioral responses of GS subjected
to sub-optimal and potentially lethal conditions while in
holding areas (responses to extremes in temperatures,

DO, pH, current velocity, illumination, turbidity)
(8) Determining the nursery habitat and food resources of

1–3 month old black-phase YOY, the black hole in
knowledge of GS life history.

(9) Conducting carefully planned acoustic telemetry, full
duplex PIT tag passage detection, and SSS monitoring
of GS habitat use and movements before and after

planned dam or sill removal, and before and after
planned construction of a fish bypass.

(10) Assessing GS bycatch and mortality in the coastal and

estuarine shrimp fisheries.
(11) Assessing if holding/resting area access limits popula-

tion recovery, perhaps by experimental holding area

excavation.
(12) Determining if GS behavior and activity is diurnally/

nocturnally coordinated for various life cycle stages.
(13) Assessing mortality rates across the critical age 6–8

estuarine to marine feeding habitat life history

transition.
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Notes

1. For any given GS river, two or more competing systems

(or none) may exist for designating ‘rkm’ distances from the
river mouth, depending on selection of the 0-rkm starting
point, and the method applied to follow the river course.

Thus, different ‘rkms’ may appear in publications for the
same physical location. In the manuscript, the rkm system
most widely used for a selected river has been adopted. File

name and full directory path: \igsbacesgs016/CEC-Raid/
Suwannee-Sturgeon-1988-2013 -population-database/USGS-
2012-2013-GS-Census_excel_database-updates/Suw-GS-1986-

2013 Data-31 Mar2015-validationMP.xls.
2. The USGS-WARC Suwannee River GS mark-recapture
database is a 13 000+ record Excel� database in machine-
readable.xlsx format. It consolidates all known and validated

scientific capture records from USGS field sampling, with
those contributed by USFWS, UF, FWC, CCC and other
sources. This publicly-available database is maintained on

the USGS-WARC main server in the care of lead GS
researcher M. T. Randall (co-author, this manuscript) and
chief information technology specialist T. Boozer. The data-

base will become fully accessible online from USGS in 2017.
3. In 2015, resumption of dredging was proposed again.
4. The USGS-WARC maintains several project-specific
Vemco� digital acoustic telemetry databases in machine-

readable.xlsx format. Databases include all validated detec-
tions of acoustically-tagged GS from within the Suwannee
River, Suwannee Sound estuary, and the adjacent coastal

GOMEX. This database is maintained on the USGS-WARC
main server in the care of lead GS researcher M. T. Randall
(co-author, this manuscript) and chief information technol-

ogy specialist T. Boozer.
5. 1 CTU = 1.0°C for 1.0 days
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