509 research outputs found

    Operation of a capacitive pumped cubr laser in a reduced energy deposition mode

    Get PDF
    The results of the operation of a capacitive pumped CuBr laser in a reduced energy deposition mode are presented. A high radiation-pulse repetition rate of 100 kHz in the active medium of copper bromide vapors was obtained. The results of OrCAD simulation of the high-frequency metal vapor active media pumping source with capacitive pumping are presented

    Behavioral Effects of a Potential Novel TAAR1 Antagonist

    Get PDF
    The trace amine associated receptor 1 (TAAR1) is a G-protein coupled receptor expressed in the monoaminergic regions of the brain, and represents a potential novel therapeutic target for the treatment of neurological disorders. While selective agonists for TAAR1 have been successfully identified, only one high affinity TAAR1 antagonist has been described thus far. We previously identified four potential low potency TAAR1 antagonists through an in silico screen on a TAAR1 homology model. One of the identified antagonists (compound 22) was predicted to have favorable physicochemical properties, which would allow the drug to cross the blood brain barrier. In vivo studies were therefore carried out and showed that compound 22 potentiates amphetamine- and cocaine-mediated locomotor activity. Furthermore, electrophysiology experiments demonstrated that compound 22 increased firing of dopamine neurons similar to EPPTB, the only known TAAR1 antagonist. In order to assess whether the effects of compound 22 were mediated through TAAR1, experiments were carried out on TAAR1-KO mice. The results showed that compound 22 is able to enhance amphetamine- and cocaine-mediated locomotor activity, even in TAAR1-KO mice, suggesting that the in vivo effects of this compound are not mediated by TAAR1. In collaboration with Psychoactive Drug Screening Program, we attempted to determine the targets for compound 22. Psychoactive Drug Screening Program (PDSP) results suggested several potential targets for compound 22 including, the dopamine, norepinephrine and serotonin transporters; as well as sigma 1 and 2 receptors. Our follow-up studies using heterologous cell systems showed that the dopamine transporter is not a target of compound 22. Therefore, the biological target of compound 22 mediating its psychoactive effects still remains unknown

    Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine

    No full text
    Trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg). The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted

    Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases

    No full text
    Introduction: The trace amines, endogenous amines closely related to the biogenic amine neurotransmitters, have been known to exert physiological and neurological effects for decades. The recent identification of a trace amine-sensitive G protein-coupled receptor, trace amine-associated receptor 1 (TAAR1), and subsequent development of TAAR1-selective small-molecule ligands, has renewed research into the therapeutic possibilities of trace amine signaling. Areas covered: Recent efforts in elucidating the neuropharmacology of TAAR1, particularly in neuropsychiatric and neurodegenerative disease, addiction, and regulation of arousal state, will be discussed. Focused application of TAAR1 mutants, synthetic TAAR1 ligands, and endogenous biomolecules such as 3-iodothyronamine (T1AM) has yielded a basic functional portrait for TAAR1, despite a complex biochemistry and pharmacology. The close functional relationship between TAAR1 and dopaminergic signaling is likely to underlie many of its CNS effects. However, TAAR1’s influences on serotonin and glutamate neurotransmission will also be highlighted. Expert opinion: TAAR1 holds great promise as a therapeutic target for mental illness, addiction, and sleep disorders. A combination of preclinical and translationally driven studies has solidified TAAR1 as a key node in the regulation of dopaminergic signaling. Continued focus on the mechanisms underlying TAAR1’s regulation of serotonin and glutamate signaling, as well as dopamine, will yield further disease-relevant insights

    Battling Neurodegenerative Diseases with Adeno-Associated Virus-Based Approaches

    No full text
    Neurodegenerative diseases (NDDs) are most commonly found in adults and remain essentially incurable. Gene therapy using AAV vectors is a rapidly-growing field of experimental medicine that holds promise for the treatment of NDDs. To date, effective delivery of a therapeutic gene into target cells via AAV has been a major obstacle in the field. Ideally, transgenes should be delivered into the target cells specifically and efficiently, while promiscuous or off-target gene delivery should be minimized to avoid toxicity. In the pursuit of an ideal vehicle for NDD gene therapy, a broad variety of vector systems have been explored. Here we specifically outline the advantages of adeno-associated virus (AAV)-based vector systems for NDD therapy application. In contrast to many reviews on NDDs that can be found in the literature, this review is rather focused on AAV vector selection and their testing in experimental and preclinical NDD models. Preclinical and in vitro data reveal the strong potential of AAV for NDD-related diagnostics and therapeutic strategies

    Inhibition of PDE10A in a New Rat Model of Severe Dopamine Depletion Suggests New Approach to Non-Dopamine Parkinson’s Disease Therapy

    No full text
    Parkinson’s disease is the second most common neurodegenerative pathology. Due to the limitations of existing therapeutic approaches, novel anti-parkinsonian medicines with non-dopamine mechanisms of action are clearly needed. One of the promising pharmacological targets for anti-Parkinson drug development is phosphodiesterase (PDE) 10A. The stimulating motor effects of PDE10A inhibition were detected only under the conditions of partial dopamine depletion. The results raise the question of whether PDE10A inhibitors are able to restore locomotor activity when dopamine levels are very low. To address this issue, we (1) developed and validated the rat model of acute severe dopamine deficiency and (2) tested the action of PDE10A inhibitor MP-10 in this model. All experiments were performed in dopamine transporter knockout (DAT-KO) rats. A tyrosine hydroxylase inhibitor, α-Methyl-DL-tyrosine (αMPT), was used as an agent to cause extreme dopamine deficiency. In vivo tests included estimation of locomotor activity and catalepsy levels in the bar test. Additionally, we evaluated the tissue content of dopamine in brain samples by HPLC analysis. The acute administration of αMPT to DAT-KO rats caused severe depletion of dopamine, immobility, and catalepsy (Dopamine-Deficient DAT-KO (DDD) rats). As expected, treatment with the L-DOPA and carbidopa combination restored the motor functions of DDD rats. Strikingly, administration of MP-10 also fully reversed immobility and catalepsy in DDD rats. According to neurochemical studies, the action of MP-10, in contrast to L-DOPA + carbidopa, seems to be dopamine-independent. These observations indicate that targeting PDE10A may represent a new promising approach in the development of non-dopamine therapies for Parkinson’s disease

    Discovery of Trace Amine-Associated Receptor 1 (TAAR1) Agonist 2-(5-(4′-Chloro-[1,1′-biphenyl]-4-yl)-4<i>H</i>-1,2,4-triazol-3-yl)ethan-1-amine (LK00764) for the Treatment of Psychotic Disorders

    No full text
    A focused in-house library of about 1000 compounds comprising various heterocyclic motifs in combination with structural fragments similar to β-phenylethylamine or tyramine was screened for the agonistic activity towards trace amine-associated receptor 1 (TAAR1). The screening yielded two closely related hits displaying EC50 values in the upper submicromolar range. Extensive analog synthesis and testing for TAAR1 agonism in a BRET-based cellular assay identified compound 62 (LK00764) with EC50 = 4.0 nM. The compound demonstrated notable efficacy in such schizophrenia-related in vivo tests as MK-801-induced hyperactivity and spontaneous activity in rats, locomotor hyperactivity of dopamine transporter knockout (DAT-KO) rats, and stress-induced hyperthermia (i.p. administration). Further preclinical studies are necessary to evaluate efficacy, safety and tolerability of this potent TAAR1 agonist for the potential development of this compound as a new pharmacotherapy option for schizophrenia and other psychiatric disorders

    Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregulation in dopamine transporter knock-out rats

    Get PDF
    Dopamine (DA) controls many vital physiological functions and is critically involved in several neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder (ADHD). The major function of the plasma membrane dopamine transporter (DAT) is the rapid uptake of released DA into presynaptic nerve terminals leading to control of both the extracellular levels of DA and the intracellular stores of DA. Here, we present a newly developed strain of rats (DAT-knockout, DAT-KO rats) in which the gene encoding the DAT has been disrupted by using zinc finger nuclease technology (ZFN). Male and female DAT-KO rats develop normally but weigh less than heterozygote and wild-type rats and demonstrate pronounced spontaneous locomotor hyperactivity. While striatal extracellular DA lifetime and concentrations are significantly increased, the total tissue content of DA is markedly decreased demonstrating the key role of DAT in the control of DA neurotransmission. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, the partial Trace Amine-Associated Receptor 1 (TAAR1) agonist RO5203648 and haloperidol. DAT-KO rats also demonstrate a deficit in working memory and sensorimotor gating tests, less propensity to develop obsessive behaviors and show strong dysregulation in frontostriatal BDNF function. DAT-KO rats could provide a novel translational model for human diseases involving aberrant DA function and/or mutations affecting the DAT or related regulatory mechanisms.SIGNIFICANCE STATEMENTHere, we present a newly developed strain of rats in which the gene encoding the dopamine transporter (DAT) has been disrupted (DAT-KO rats). DAT-KO rats display functional hyperdopaminergia accompanied with pronounced spontaneous locomotor hyperactivity. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, and a few other compounds exerting inhibitory action on dopamine-dependent hyperactivity. DAT-KO rats also demonstrate cognitive deficits in working memory and sensorimotor gating tests, less propensity to develop compulsive behaviors and strong dysregulation in frontostriatal BDNF function. These observations highlight the key role of the DAT in the control of brain dopaminergic transmission. DAT-KO rats could provide a novel translational model for human diseases involving aberrant dopamine functions
    corecore