4 research outputs found

    Landslide monitoring using seismic refraction tomography: the importance of incorporating topographic variations

    Get PDF
    Seismic refraction tomography provides images of the elastic properties of subsurface materials in landslide settings. Seismic velocities are sensitive to changes in moisture content, which is a triggering factor in the initiation of many landslides. However, the application of the method to long-term monitoring of landslides is rarely used, given the challenges in undertaking repeat surveys and in handling and minimizing the errors arising from processing time-lapse surveys. This work presents a simple method and workflow for producing a reliable time-series of inverted seismic velocity models. This method is tested using data acquired during a recent, novel, long-term seismic refraction monitoring campaign at an active landslide in the UK. Potential sources of error include those arising from inaccurate and inconsistent determination of first-arrival times, inaccurate receiver positioning, and selection of inappropriate inversion starting models. At our site, a comparative analysis of variations in seismic velocity to real-world variations in topography over time shows that topographic error alone can account for changes in seismic velocity of greater than ±10% in a significant proportion (23%) of the data acquired. The seismic velocity variations arising from real material property changes at the near-surface of the landslide, linked to other sources of environmental data, are demonstrated to be of a similar magnitude. Over the monitoring period we observe subtle variations in the bulk seismic velocity of the sliding layer that are demonstrably related to variations in moisture content. This highlights the need to incorporate accurate topographic information for each time-step in the monitoring time-series. The goal of the proposed workflow is to minimize the sources of potential errors, and to preserve the changes observed by real variations in the subsurface. Following the workflow produces spatially comparable, time-lapse velocity cross-sections formulated from disparate, discretely-acquired datasets. These practical steps aim to aid the use of the seismic refraction tomography method for the long-term monitoring of landslides prone to hydrological destabilization

    Landslide assessment through integrated geoelectrical and seismic methods: A case study in Thungsong site, southern Thailand

    No full text
    Many landslides can cause significant damage to infrastructure, property, and human life. To study landslide structure and processes, geophysical techniques are most productive when employed in combination with other survey and monitoring tools, such as intrusive sampling. Here, the integration of electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods is used to assess landslides in Thungsong district, Nakhon Si Thammarat, the south of Thailand, where is a hilly and seasons of prolonged rainfall region. The 2D cross-plot analysis of P-wave velocity and resistivity values obtained by these two methods is introduced to identify potential landslide-prone zones in this region. The results of the 2D cross-plot model reveal detailed image of the subsurface conditions, highlighting areas of low P-wave velocity (lower than 600 m/s) and low resistivity (lower than 600 Ωm). These areas are indicative of weak zone and are potential to be sliding materials. Moreover, an intrusive sampling data from boreholes is also used for the calibration and validation geophysical data with geological data. This can improve the accuracy of landslide assessment and develop effective mitigation strategies to reduce the risk of landslides in this area. In addition of the 2D cross-plot, the volume of sliding material is also determined from the difference of the surface and slipping plane elevations. The volume calculation of sliding material is roughly 33447.76 m3. This approach provides a preliminary tool for landslide studies and monitoring landslides in this region, thus enabling an improved understanding of slope failure processes in this context, and the basis of a landslide mitigation strategy in the future

    An overview of high spatial resolution geophysical methods for landslide characterisation and monitoring:25th European Meeting of Environmental and Engineering Geophysics, Held at Near Surface Geoscience Conference and Exhibition 2019, NSG 2019

    No full text
    Combining geophysical methods allows for the characterisation and monitoring of subsurface processes in landslide systems at unprecedented spatiotemporal resolutions. For high spatial resolution characterisation and monitoring of the subsurface, methods that provide maps, cross-sections and three-dimensional volumes of data are preferred. An overview of the results of various long-term monitoring campaigns using such geophysical methods at the Hollin Hill Landslide Observatory in the UK are presented. These methods include electrical resistivity and seismic tomography, self-potential mapping and cross-sections of horizontal-to-vertical ratio measurements of ambient seismic noise. Repeating these surveys over time results in the production of time-lapse data, making these approaches effective monitoring tools. Variations in these measurements show relationships to changes in environmental conditions, for example, decreases in seismic velocity and resistivity values associated with decreases in soil moisture content. Critically, the use of geotechnical-geophysical relationships can provide information between, and beyond the depth of, shallow geotechnical and surface environmental sensors. Using such time-series of high resolution spatial data can help achieve a better understanding of the moisture and kinematic dynamics of unstable slopes, and provides subsurface information for incorporation in to local landslide early warning systems. © 2019 25th European Meeting of Environmental and Engineering Geophysics, Held at Near Surface Geoscience Conference and Exhibition 2019, NSG 2019. All rights reserved
    corecore