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Abstract 18 

Seismic refraction tomography provides images of the elastic properties of subsurface materials in 19 

landslide settings. Seismic velocities are sensitive to changes in moisture content, which is a triggering 20 

factor in the initiation of many landslides. However, the application of the method to long-term 21 

monitoring of landslides is rarely used, given the challenges in undertaking repeat surveys and in 22 

handling and minimizing the errors arising from processing time-lapse surveys. Using the results of a 23 

recent, novel, long-term seismic refraction monitoring campaign at an active landslide in the UK, a 24 

simple method for producing a reliable time-series of inverted seismic velocity cross-sections is 25 

presented in a workflow. Potential sources of error include those arising from inaccurate and 26 

inconsistent determination of first-arrival times, inaccurate receiver positioning, and selection of 27 

inappropriate inversion starting models. At our site, a comparative analysis of variations in seismic 28 

velocity to real-world variations in topography over time shows that topographic error alone can account 29 

for changes in seismic velocity of greater than ±10% in a significant proportion (23%) of the data 30 

acquired. The seismic velocity variations arising from real material property changes at the near-surface 31 

of the landslide, linked to other sources of environmental data, are demonstrated to be of a similar 32 

magnitude. Over the monitoring period we observe subtle variations in the bulk seismic velocity of the 33 

sliding layer that are demonstrably related to variations in moisture content. This highlights the need to 34 

incorporate accurate topographic information for each time-step in the monitoring time-series. The goal 35 

of the proposed workflow is to minimize the sources of potential errors, and to preserve the changes 36 

observed by real variations in the subsurface. Following the workflow produces spatially comparable, 37 

time-lapse velocity cross-sections formulated from disparate, discretely-acquired datasets. These 38 

practicable steps aim to aid the use of the seismic refraction tomography method for the long-term 39 

monitoring of landslides prone to hydrological destabilization. 40 

Keywords 41 
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1. Introduction 44 

The implementation of robust and appropriate monitoring strategies is critical for the ongoing 45 

assessment of potentially destabilising processes in landslide systems (Angeli et al., 2000). Near-surface 46 

geophysical methods are increasingly used to monitor the subsurface conditions of landslides 47 

susceptible to hydrological destabilization (Perrone et al., 2014, Whiteley et al., 2019), most commonly 48 

by active-source DC electrical resistivity (ER) (e.g., Lucas et al., 2017)  and passive-source seismic 49 

monitoring (e.g., Walter et al., 2012). ER can provide information on the moisture dynamics of an 50 

unstable slope, and passive-source seismic can provide information on the kinematics of failure events. 51 

One major advantage of active-source geophysical methods, such as ER, is their ability to produce 52 

spatially high-resolution, time-lapse images of the subsurface. However, the majority of seismic 53 

landslide monitoring campaigns utilise passive-source methods, which provide superior temporal 54 

resolution, but are limited in their spatial resolution due to practical limitations on the number of sensors 55 

in an array.  56 

Seismic refraction tomography (SRT), an active-source seismic method, can characterize the spatial 57 

heterogeneities in elastic properties of materials in landslide systems (e.g., Uhlemann et al., 2016). SRT 58 

determines the travel-time of artificially generated seismic waves, to build up a series of travel-time 59 

curves for waves propagating through the subsurface. These travel-times are inverted to produce 60 

subsurface cross-sections of seismic velocity. The two types of body waves used in SRT, P-waves and 61 

S-waves, propagate through subsurface media differently depending on lithological and physical 62 

properties. P-wave velocity, Vp, is given by 63 

 𝑉    
 
 ,      (1) 64 

in which K is the bulk modulus (a measure of a material’s resistance to uniform compression), G is the 65 

shear modulus (a measure of a material’s resistance to shear strain) and ρ is material density. The S-66 

wave velocity, Vs, is given by 67 

  𝑉   .      (2) 68 

In solid rock, the relationship between seismic velocity and saturation has been empirically 69 

demonstrated, and is relatively well understood. Considering a fully saturated rock, as liquid (with a 70 

higher K; Equation 1) in pore spaces initially become replaced by gas, Vp decreases rapidly and Vs 71 

changes with saturation due to changes in bulk density and shear modulus (Equation 2) (Wyllie et al., 72 

1956). These seismic attributes and their relationship to the petrophysical properties of rock can be used 73 

to determine the effects of saturation on seismic velocity (e.g., Biot, 1956, Gassmann, 1951). 74 
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In soils, the effect of variations in saturation on seismic velocity is less well-understood. Existing 75 

evidence indicates that both the distribution of moisture throughout the soil structure, as well as the 76 

influence that capillary forces have on effective pressure, influence Vp at small scales (Romero-Ruiz et 77 

al., 2018). Experiments in artificial, well-mixed, homogenous soils, have demonstrated that Vp 78 

decreases with increasing saturation (Lu and Sabatier, 2009) and similar results have been obtained 79 

from laboratory measurements on undisturbed samples of Loess soils (Flammer et al., 2001). These 80 

decreases in Vp are dominated by changes in the matric potential of the soil (related to capillary forces). 81 

The effects of capillary forces are likely to be very different between artificial and natural soils, with 82 

the former having no internal structure or little consolidation, both of which reduce the influence of 83 

capillary forces.  84 

Despite this lack of understanding on the precise mechanism by which seismic velocities are influenced 85 

by moisture content in soils, seismic attributes are still routinely used in larger scale field studies to 86 

assess characteristics of near-surface sediments. The ratio between Vp and Vs (Vp/Vs) can be used to 87 

assess lithology, strength and quality, structure and saturation of near-surface sediments for 88 

geotechnical investigations (Bhowmick, 2017). Seismic surveys to obtain in-situ Vp, Vs and Vp/Vs have 89 

been used to image physical properties, including ground saturation, in the field (Pasquet et al., 2016b), 90 

and have been used to monitor shallow saturation processes in the laboratory (Pasquet et al., 2016a). 91 

Poisson’s ratio, a property closely related to Vp/Vs ratio which measures lateral strain to axial strain, has 92 

been shown to relate to porosity in near-surface sediments, and can be used to determine areas of  93 

localised saturation (Uhlemann et al., 2016, Uyanık, 2011).  94 

The use of SRT as a tool for long-term landslide monitoring is almost absent from the literature. 95 

Examples of active-source seismic landslide monitoring campaigns focus on the characterization of 96 

surface fissures (see Grandjean et al., 2009, Bièvre et al., 2012) rather than the monitoring of moisture-97 

induced elastic property variations. The dearth of studies using SRT as a long-term monitoring tool for 98 

landslides is likely due to the complexity of managing and minimizing the several sources of error in 99 

the individual surveys (i.e., time-steps) that comprise a monitoring time-series. In this study, we present 100 

the results of acquiring, processing and inverting a long-term SRT time-lapse dataset collected from an 101 

active landslide. To our knowledge, the use of SRT in a monitoring campaign at an active landslide site 102 

has not been implemented to date. The methodology is applied to time-lapse SRT monitoring at a site 103 

of active slope failure in North Yorkshire in the UK. This study aims to develop a practical approach to 104 

active-source time-lapse seismic surveying of vulnerable slopes, and to demonstrate the applicability of 105 

high spatial resolution subsurface monitoring using SRT. The approach taken is summarised in a 106 

workflow, from which a practical walkthrough of how the time-lapse SRT data were acquired, 107 

processed and inverted using a novel two-stage inversion procedure is presented. The importance of 108 

incorporating the topography of the landslide surface from every survey (i.e., for each time-step) in a 109 

monitoring campaign is highlighted. Summary results from the SRT monitoring campaign are presented 110 
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and discussed, and support the use of SRT to monitor moisture dynamics at active landslide sites. The 111 

approach and results of this study should be of interest to researchers studying the evolution of 112 

subsurface processes acting to destabilise landslide systems (Jaboyedoff et al., 2019), and to those using 113 

geophysical methods in landslide early-warning systems (Intrieri et al., 2012) and monitoring 114 

environmental changes. 115 

2. Seismic refraction tomography monitoring at the Hollin Hill Landslide Observatory  116 

The Hollin Hill Landslide Observatory (HHLO) in North Yorkshire, UK (Chambers et al., 2011, Merritt 117 

et al., 2013), is operated by the British Geological Survey. The landslide comprises an interbedded 118 

series of Lower and Middle Jurassic sandstones and mudstones (Figure 1), namely the Whitby 119 

Mudstone Formation (WMF) and Staithes Sandstone Formation (SSF).  120 

 121 

Figure 1: A simplified conceptual model of the HHLO (modified from Uhlemann et al., 2016), indicating movement domains, 122 
slip-surface, indicative positon of water tables, and main lithological units comprising the Whitby Mudstone Formation (WMF) 123 
and Staithes Sandstone Formation (SSF). 124 

The moisture content of the WMF controls displacement occurrence at the site. The WMF is of low 125 

permeability and drains slowly into the underlying SSF. Hence, during periods of increased 126 

precipitation, moisture content within the WMF increases quickly (creating localized perched 127 

groundwater tables), and decreases slowly during periods of lower precipitation. Slope failure is most 128 

likely during these periods of intense and prolonged rainfall.  129 
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 130 

Figure 2: Aerial photographs from the Hollin Hill Landslide. a) Image from 2007 showing the main features of the landslide, 131 
including backscarps at top of slope (north), and flow-lobes at base of slope (south). Map data: Google, Infoterra Ltd and 132 
Bluesky. b) Image from 2007 showing development of new backscarp after movement in 2016. Map data: Digimap.  c) 133 
Continued backscarp development shows landslide extension, and propagation of the backscarp to the west. Map data: 134 
Google. Black dots are the indicative locations of receivers used in the SRT surveys, with the first receiver location (northern 135 
most dot) located outside of the active landslide area, acting as a static reference point against which the receiver arrays are 136 
deployed. The location of this receiver is marked by a ground peg installed at the site. 137 

Seasonal variations in moisture content, linked to regional groundwater levels and local infiltration of 138 

rainwater, decrease restraining soil-suction forces (potentially producing destabilising positive pore-139 

water pressures) initiating movement at the slip-surface mid-slope. This translational displacement 140 

propagates uphill as support for overlying material is removed, culminating in the development and 141 

widening of rotational backscarps in the saturated WMF at the top of the slope. Downslope, mobilised 142 

material is reworked to form flow lobes at the base of the landslide, where movement is eventually 143 

arrested through drainage to underlying deposits of well-sorted, aeolian quaternary sands deposited at 144 

the top of the SSF. Aerial imagery from 2007, 2017 and 2018 shows the development of 145 

geomorphological landslide features at the HHLO (Figure 2). 146 

SRT monitoring at the HHLO aims to identify changes in the elastic properties of the underlying 147 

lithological units. These variations in elastic properties are primarily driven by variations in slope 148 

moisture dynamics. Between October 2016 and August 2019, 16 SRT surveys were acquired, resulting 149 

in the production of 16 Vp and 16 Vs cross-sections spanning a period of 1001 days, close to 33 months. 150 

metres 
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The length of time of the monitoring period allowed data to be collected over two distinct annual 151 

climatic cycles, ensuring data were acquired at different subsurface moisture contents, and during 152 

multiple wetting and drying phases of the landslide system, capturing temporal heterogeneity in 153 

hydrological condition. Data were acquired at an average return interval of 9 weeks, which was deemed 154 

to be practicable given the characteristics of the landslide system and long-term monitoring period. A 155 

shorter return interval would have been desirable, but this was prevented by the logistical and financial 156 

cost of mobilisation, equipment availability and deployment, and acquisition and processing time 157 

associated with each survey; surveys typically involved two to three days of fieldwork, followed by 158 

several days of data processing.  159 

The SRT surveys were acquired along the same profile location over the duration of the monitoring 160 

campaign. The profile comprised of 2m spaced geophones (i.e., receivers), positioned from the crest of 161 

the landslide to the toe (Figure 2). The location of the survey profile was chosen based on previous 162 

geophysical surveys that have been undertaken at the site (see Uhlemann et al., 2016) and position of 163 

geotechnical sensors (see Merritt et al., 2013). For both the P- and S-wave surveys, a 48-channel ABEM 164 

Terraloc Mk6 was used to acquire seismic refraction data. To acquire contiguous data from the entire 165 

spread length (142m total length, comprising 72 receiver locations), two separate 48 receiver (94m 166 

long) profiles with a 46m overlap between the surveys were acquired. Receivers used in both 167 

deployments were not moved between spread acquisitions, and shot locations were accurately relocated 168 

and repeat shots undertaken, so that the overlapping spreads could be processed as a single profile of 169 

data.  170 

Vertical geophones with a dominant frequency of 8Hz were used as receivers for the P-wave survey, 171 

and a 4 kg sledgehammer and horizontal steel plate were used as a source. At each shot location, data 172 

were recorded for 1 second, in order to acquire both refracted P-wave arrivals and surface wave data 173 

(these latter data are not described in this study). Shot records were stacked in the field, and the number 174 

of stacked shot records varied between surveys based on environmental conditions, such as wind speed 175 

and rain; a minimum of two stacks per location were acquired in optimal conditions (i.e., low or no 176 

wind and rain), and up to six stacks per location were acquired in poorer conditions.  177 

For the S-wave survey, horizontal geophones with a dominant frequency of 14Hz were used as the 178 

receivers, and a prism with ~45° inclined face was used to generate S-waves in opposing polarisations, 179 

perpendicular to the orientation of the receiver profile (Uhlemann et al., 2016). Data were recorded for 180 

0.5 seconds, and same-polarisation shot records were stacked, with a minimum of two stacked per 181 

receiver location saved in optimal survey conditions, and up to a maximum of six shot records per 182 

location saved in poor survey conditions. 183 

In both surveys, geophones were buried to a depth of ~10cm below ground level in an attempt to isolate 184 

the receivers from aerial environmental noise, and to provide better coupling with the subsurface. Shots 185 
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were acquired at every other receiver location (i.e., every 4 m) for the whole of the receiver spread, 186 

starting at the first receiver at the crest of the slope. It was not possible to acquire off-end shots at the 187 

top of the profile (i.e., before the first geophone), due to access. For the P-wave surveys, off-end shots 188 

at the end of the of the spread were acquired at 4m intervals beyond the penultimate receiver at the toe 189 

of the slope to a maximum off-end distance of 22m beyond the last receiver (i.e., 164m from the first 190 

receiver). For the S-wave surveys, off-end shots were acquired at 10m intervals to a distance of 20m 191 

beyond the last receiver (i.e., 162m from the first receiver). For both surveys, the same shot locations 192 

were used throughout the entire monitoring campaign, ensuring consistent spatial coverage between 193 

surveys. 194 

3. Overcoming challenges in long-term SRT monitoring of landslides 195 

In this study, several sources of error in SRT surveys need to be accounted for during data acquisition, 196 

and in the subsequent data processing and inversion stages. Some of these sources of error are unique 197 

to landslide monitoring. The goal during processing is to minimize transient changes in time-lapse data 198 

that may arise from differences in survey set-up and processing of data between surveys, and to preserve 199 

changes arising from genuine variations in the properties of landslide materials. As velocity is the 200 

quotient of distance and time, the determination of accurate velocities relies on correct picking (i.e., 201 

identifying correct travel-times) and positioning (i.e., determining true distances) of data. The major 202 

sources of potential error in SRT acquisition and processing are related to: 203 

Data quality and processing 204 

 Consistent picking of first-arrivals 205 

 Consistent coverage of data 206 

 Development of an appropriate error model 207 

Topographic and inversion parameters 208 

 Consistent repositioning of receivers to the same locations between surveys 209 

 Capturing variations in receiver positions between surveys 210 

 Accounting for changes in landslide topography between surveys 211 

Appropriate inversion constraint 212 

 Incorporating errors into the inversion 213 

 Determining appropriate constraints for data inversion 214 

 Using constraints to regularize data over time 215 

A workflow to produce a robust seismic velocity time-series is shown in Figure 3. The following 216 

sections describe how the stages of the workflow are used to address the issues outlined above. 217 
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 218 

 219 

Figure 3: Proposed workflow for processing SRT surveys to produce time-lapse data. SRT data are first processed using 220 
reciprocal data analysis for quality control. Individual SRT datasets are inverted for velocity models using a reference model 221 
approach. Time-lapse SRT images are then created using unique topography acquired at each survey, in order to determine 222 
velocity changes in the subsurface between surveys. 223 

3.1. Data quality and processing 224 

Identifying consistent, repeatable first arrivals in SRT data is a recognised challenge with no universally 225 

accepted solution. Attempts include using automatic picking algorithms (e.g., Khalaf et al., 2018) and 226 

using statistical approaches (e.g., Dangeard et al., 2018) to minimize absolute and relative errors 227 

introduced by operators picking time-lapse SRT data. In this study, reciprocal errors between inverse 228 

source-receiver configurations are used to identify ‘bad’ picks that display an unacceptable differential 229 

in reciprocal travel-time. Reciprocal measurements require receiver locations to be used as both receiver 230 

and source location during the course of the survey. Therefore, reciprocal analysis is undertaken on 231 

~50% of the entire data for any given survey, and is used as a representative sample of the entire survey 232 

dataset i.e., a reciprocal error subset. The error (e) in a reciprocal measurement (defined as the mean 233 

travel-time of the two measurements) is defined as 234 

|𝑒| 100 ∙
| |

 ,      (4) 235 

in which tn is the travel-time between a source at position A, and receiver at position B, and tr is the 236 

travel-time between a source at position B and a receiver at position A. Lack of measurement reciprocity 237 

occurs when intra-survey (i.e., within the same time-step) data coverage is inconsistent. Factors leading 238 

to poor data coverage include low signal-to-noise-ratio at larger source-receiver offsets and interference 239 

from noise sources, such as wind, rain and amplification of these noise sources through nearby trees 240 

(Figure 4a). Lack of reciprocity occurs in travel-times with further source-receiver offsets, and therefore 241 

the use of reciprocal measurements as a data quality indicator favors data acquired from the very near-242 
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surface (i.e., shots with smaller source-receiver offsets). Across all of the reciprocal error subsets from 243 

each time-step in this study, 12.5% of the Vp data and 14.1% of the Vs data are not analysed due to lack 244 

of reciprocal measurements. Remaining reciprocal-pairs of measurements showing a discrepancy e>5% 245 

are re-examined and re-picked (Figure 4b). Shot records adjacent to a reciprocal-pair with e>5% are 246 

also considered during this procedure. The data are then re-analyzed, and any further measurements 247 

with e>5% are re-picked. This iterative process continues until all measurements in the dataset have 248 

e<5%. 249 

 250 

Figure 4: a) Examples of Vp shot records from the same position at the HHLO from December 2017 (left panel) and June 251 
2018 (right panel). Poor signal-to-noise at larger source-receiver offsets prohibits the identification of first arrivals, and 252 
prevents acquiring reciprocal pairs for every measurement in the survey. b) The process of identifying reciprocal errors within 253 
a subset of the refraction survey data with e>5% from Vp data from June 2017. Top left panel shows all first-arrival data 254 
(displayed as travel-time curves) with pairs of measurements of e>5% circled in red. Top centre panel shows the distribution 255 
of relative reciprocal errors within the reciprocal error data subset, and the top right panel shows the distributions of absolute 256 
reciprocal errors from this data subset as a function of source-receiver offset, indicating that shots with further offsets have 257 
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higher errors. The corresponding panels below show the effect of iteratively identifying and re-picking data with e>5%, in 258 
order to reduce errors across the dataset. 259 

 A further issue arising from implementing a time-lapse approach is achieving consistent inter-survey 260 

(i.e., between time-steps) data coverage over time. Consistent coverage could not always be achieved 261 

due to variations in noise sources between surveys. Surveys showed a significant variation in maximum 262 

recorded travel-times, and without some normalisation of these maximum travel-times, comparison of 263 

the inverted sections to determine an appropriate reference model (see Section 3.3) is challenging, 264 

primarily due to differences in maximum travel-times inducing significant variations in the maximum 265 

depths of coverage in the inverted models. To overcome this, the distribution of all travel-times from 266 

across the monitoring period is plotted, and a travel-time value that preserves the majority of the data 267 

is chosen as a cut-off. In this case, the chosen cut-off travel-times are 86ms and 178ms for the Vp and 268 

Vs data, respectively. Data with travel-times over this cut-off are discarded, creating consistency in 269 

coverage between time-steps, but reducing the total number of data points. Across all of the time-steps 270 

of this study, 1.5% of the Vp data and 17.1% of the Vs data are discarded, giving a common maximum 271 

travel-time between surveys. More Vs data are discarded due to better to signal-to-noise ratios during 272 

the Vs surveys, giving better data quality and coverage, but in turn requiring larger amounts of data to 273 

be discarded to match the coverage of the Vp surveys. 274 

3.2. Topography and inversion parameters 275 

Repositioning of receivers to repeatable x, y and z positions on the landslide surface is crucial to ensure 276 

that seismic ray paths are sampling comparable domains of the subsurface over time. The positioning 277 

error in x and y can be minimized by deploying receivers relative to permanent markers located outside 278 

of the active area of the landslide, and recording absolute x and y positions for receiver locations. 279 

Furthermore, the slope surface (z) will change between surveys. This effect cannot be removed by 280 

accurate positioning, and therefore needs to be incorporated into the data processing. Variations in z, as 281 

well as small unavoidable discrepancies in x and y positions can be captured using accurate geodetic 282 

surveying methods. 283 

In this study, receivers are deployed every 2m, with the first receiver located outside of the active 284 

landslide area (i.e., above the backscarp) and deployed at the same absolute position for each survey. A 285 

permanent ground peg marks the location of this first receiver, and a tape measure draped across the 286 

ground surface is used to deploy the remainder of the survey profile relative to this location. A Real-287 

Time Kinetic Global Navigation Satellite System (RTK-GNSS) is used to capture the absolute positions 288 

in x, y and z of all receivers with a precision <0.05 m. With accurate positional data for each survey, the 289 

‘line-of-sight’ distance (d) between one receiver location with coordinates (xi,yi,zi) and another with 290 

coordinates (xi-1,yi-1,zi-1) can be expressed as 291 

𝑑  ∑ 𝑥 𝑥 𝑦 𝑦 𝑧 𝑧  .  (3) 292 
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Topographic features between these receiver locations (i.e., those features smaller than the receiver 293 

spacing) are not captured in the data.  294 

For accurate 2D seismic travel-time inversion, accurate elevations and horizontal distances of the 295 

receivers are required, as the fundamental problem to be solved is one of distance and time. It is common 296 

in SRT surveys (and in array-type geophysical surveys in general) for the elevations (zi) of sensors to 297 

be recorded accurately, but for the inter-receiver spacing to be assumed to be a “fixed” nominal 298 

horizontal distance. This is particularly common in surveys on flat or uniformly dipping surfaces, where 299 

accurate inter-receiver spacing are easier to measure and control. However, in environments where 300 

topography can vary sharply within the receiver array, such as landslides, this approach can lead to 301 

errors in the positioning of receivers, which in turn introduces errors in to the generation of subsurface 302 

meshes for inversion, ultimately influencing the resulting inverted travel-times. Figure 5 shows the 303 

discrepancies that can arise from assuming a “fixed” nominal spacing (e.g., assuming receivers are 304 

deployed every 2m, without accounting for the changes in distance that topography will create) with 305 

variable zi measurements (red points) against using the true xi, yi and zi positions to generate line-of-306 

sight distances using Equation 3 in this study (green points). Using a “fixed” nominal spacing for time-307 

lapse monitoring ignores lateral variations in receiver spacing, and results in an overestimation of array 308 

length. Acquiring topographic information at every survey (i.e., time-step) allows for accurate inversion 309 

of travel-times.  310 

The SRT profile is orientated to match the maximum slope profile, which is broadly parallel to the 311 

north-south orientation, and therefore the main direction of recorded wave propagation for the SRT 312 

survey was also in a north-south direction. Greater variations in the y coordinate of the receiver position 313 

(i.e., north-south orientation, parallel to slope) would therefore introduce larger errors to the results of 314 

the seismic survey if not accounted for, as opposed to variations in x coordinates (i.e., east-west 315 

orientation, perpendicular to slope), which have a smaller effect. Between each survey, the mean 316 

variation in receiver repositioning is 0.03m in the x coordinate (1.5% of receiver spacing), and 0.01m 317 

in the y coordinate (0.5% of receiver spacing), which is below the nominal accuracy of the equipment 318 

used for data acquisition. Across the entire monitoring period (26 months), receiver positions vary by 319 

an average of 0.41m in the x coordinate (20.5% of receiver spacing) and 0.15m in the y coordinate 320 

(7.5% of receiver spacing). Some active areas of the landslide experience much greater variations due 321 

to changes in the slope displacements (Figure 5). 322 

 323 
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 324 

Figure 5: The positions of receivers used in the SRT surveys at HHLO superimposed on to the site conceptual model, and their 325 
variation over the monitoring period. The green points are surveyed positions using an RTK-GNSS system, where Equation 3 326 
has been used to generate true line-of-sight receiver distances. The red points show how errors in positioning can arise if a 327 
“fixed” nominal receiver spacing is assumed, resulting in lateral erros in receiver positions, and over-estimation of slope 328 
length. 329 

3.3. Appropriate inversion parameters 330 
In this study, 2D inversion of the seismic data is undertaken using the open-source Python based 331 

software pyGIMLi (Rücker et al., 2017). This software allows the inclusion of an error model derived 332 

from the absolute and relative errors across the entire time-lapse dataset, obtained by determining the 333 

slope and intercept of a linear best-fit line of absolute errors plotted against mean reciprocal travel-time 334 

(both in milliseconds). A mesh-generation module in pyGIMLi produces unique meshes for each time-335 

step inversion, derived from the RTK-GNSS measurements (see section 3.2). The production of unique 336 

meshes for each time-step increased intra-survey accuracy, but presents issues for later time-series 337 

analysis; in an ideal monitoring campaign, the inversion meshes for each of the survey time-steps would 338 

be identical, allowing for comparison of inverted velocity models on a cell-by-cell basis. However, 339 

given the overriding importance of capturing the differences in receiver positions and topography 340 

between time-steps, the use of unique meshes is necessary, and this issue is addressed after the final 341 

data inversion.  342 

For this study, a two-stage ‘reference model’ inversion approach is used to constrain the inversion and 343 

minimize differences between time-steps (Figure 3). In the first stage, stand-alone inversions of all of 344 

the individual time-steps are undertaken, using a variety of constraints for the starting model, including 345 

depth, velocity gradient and smoothing factor (Table 1). RMS and chi-squared (χ2) values are calculated 346 
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for each inverted model. The ‘best-fit’ model is assessed by looking at the divergence of χ2 from a 347 

‘perfect-fit’ model, in which χ2 = 1. The model with the lowest absolute divergence (i.e., closest to χ2 = 348 

1) is designated as the ‘reference model’ for the second inversion stage. Details of the values of χ2 and 349 

diversion from χ2 for each inversion are shown in (see Table 2, in Appendix). 350 

In the second stage of the inversion process, the inversion of the entire data set is then repeated, but this 351 

time using the ‘reference model’ from stage one as the starting model, and keeping all other applicable 352 

starting model parameters the same as those used in the first stage. Using this method gives all time-353 

steps a realistic and common starting model that is appropriately constrained and represents the local 354 

subsurface seismic properties.  355 

Inversion settings 

Inversion 
parameter 

Depth of 
mesh 

Minimum 
velocity at 

surface 

Maximum 
velocity at 

base 

Smoothing 
factor 

(lambda) 

Maximum 
travel time 

Absolute 
data error 

Relative 
data 
error 

P-wave 
inversion 

input value 
40m 300m/s 3000m/s 25 86ms 0.0242ms 0.02% 

S-wave 
inversion 

input value 
40m 100 1500 25 178ms 0.0194ms 0.006% 

Table 1: The inversion parameters used for both stages of the inversion process, for both the Vp and Vs surveys. 356 

As a result of incorporating unique topography for each time-step, each time-step has a different mesh. 357 

To allow for consistent analysis of inverted velocity models between time-steps, the data are re-sampled  358 

and interpolated to a regular, refined, triangular mesh (constructed using the same pyGIMLi module), 359 

effectively creating a spatially-identical time-series on a consistent mesh (Figure 7a). We use a mesh 360 

generated with the most recent topography in the monitoring campaign, in order to better reflect an up 361 

to date state of the system. One consequence of this approach is that some cells from earlier surveys, in 362 

which the surface positions may now have slipped downslope are not sampled to the resampling mesh. 363 

To mitigate against this effect, we use a refined cell size that is smaller than the original cells used for 364 

the inversion, purposefully oversampling the inverted data in order to discretize the subsurface, and 365 

capture variations in the very near-surface. This enables a range of analyses of the time-lapse dataset 366 

(see Figure 3; Data analysis and integration). 367 

4. Topographic induced variations in seismic velocity 368 

In section 3.2, we emphasise the importance of accurately capturing the intra-survey topography by 369 

using 2D line-of-sight distances from 3D GNSS surveys, and using topography data acquired for each 370 

individual survey in the monitoring campaign. This short section serves to demonstrate how failing to 371 

accurately capture variations in topography can have a significant impact on final inverted Vp and Vs 372 

measurements. 373 

To demonstrate the effect of temporal topographic variation on seismic velocity, the first 14 Vp datasets 374 

(D0:D13) and accompanying topographic surveys (T0:T13) are processed according to the workflow in 375 

Figure 3, and the text in Sections 3.1 to 3.3. A P-wave travel-time dataset from midway through the  376 
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monitoring campaign, January 2018 (D8), is processed and inverted using the surveyed topography (T8) 378 

to produce a ‘true’ time-step dataset (TTS8) comprising 2128 subsurface Vp data points. The same 379 

seismic dataset (D8) is then processed using the remaining topographic data (T0:T7, T9;T13), resulting in 380 

13 SRT time- steps with ‘false’ topography (FTS0:FTS7, FTS9:FTS13). The variations present in these 381 

‘false’ time-steps represent the effect that real-world variations in topography across the monitoring 382 

period have on seismic velocity. By normalising all of the time-step data to TTS8, the results from 383 

January 2018 become a baseline against which variations in seismic velocity arising from subtle, but 384 

realistic changes in landslide topography are assessed. The result of this analysis is shown in Figure 6. 385 

They indicate that topographic variations can have a large impact on the resulting Vp, with 23% of the 386 

total data showing velocities greater than ±10% of the true maximum recorded velocity. This has 387 

significant implications when trying to identify variations arising from genuine subsurface elastic 388 

property changes caused by environmental factors, as these variations can be very subtle (see Section 389 

5). 390 

 391 

Figure 6: Relative changes in Vp caused by subtle, real-world changes in topography. The solid black line at y=0 represents 392 
a normalised baseline (TTS8-TTS8). The same seismic dataset (D8) has been processed using the other time-step topographic 393 
data; any variations in Vp are therefore a product of these subtle topographic changes between surveys. 394 

5. Data analysis and results 395 

One approach to analysing time-series SRT data is to look at how the seismic attributes of discrete 396 

seismic units respond to changing environmental conditions. The prevalent subsurface lithological 397 

discontinuities (i.e., those that are stable in time) are highlighted by plotting the mean values of the 398 

individual cells across the 33 month monitoring period (Figure 7). These plots are displayed using the 399 
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most recent topography in the time-series. The individual cross-sections highlight significant subsurface 400 

features, including changes in lithology at depth, and different domains  401 

 402 

Figure 7: a) The regular mesh used to sample all of the individual time-steps to create spatially comparable datasets for the 403 
time-series. The cells highlighted purple in the surface sliding have been used for the analysis in Figure 8. b) Cross-section 404 
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showing average Vp across the time-series. The value shown in each cell (see Figure 7a) is the mean velocity value from the 405 
entire 26 month monitoring period.  c) Cross-section showing average Vs across the time-series. The value shown in each cell 406 
(see Figure 7a) is the mean velocity value from the entire 26 month monitoring period. d) Cross-section showing average Vp 407 
/Vs across the time-series. The value shown in each cell (see Figure 7a) is the mean ratio value from the entire 26 month 408 
monitoring period. 409 

of movement in the near surface. Plots showing the standard deviation of these mean values (Figure 7) 410 

indicate the areas of the landslide that show greatest velocity variation across the monitoring period. 411 

Here we concentrate on the sliding layer at the HHLO (extending from the surface to 2 – 4m depth), 412 

which is easily identified by the low Vp and Vs at the surface of the cross-sections. This extends from 413 

beneath the break in slope at the bottom of the back scarp (~15m horizontal distance), to the base of the 414 

flow lobes (125m horizontal distance). At HHLO this surface sliding layer is monitored by several 415 

subsurface and surface environmental sensors, recording rainfall and changes in moisture content, 416 

allowing direct comparison with inverted cross sections. By selecting grid cells within this layer, it is 417 

possible to calculate the change in velocity over time. In our case, the surface layer comprises grid cells 418 

from both the Vp and Vs time-series datasets (Figure 7b and Figure 7d), the positions of which are fixed 419 

through the use of a common fixed mesh. Figure 8 shows the time-series Vp and Vs inverted values 420 

extracted from this surface layer, alongside calculated effective rainfall, soil moisture data from a 421 

cosmic-ray sensor measuring shallow (~0.1m bgl) moisture content across the site. Vp increases and 422 

decreases in relation to soil moisture, but with a time lag. The lag effect is caused by the difference of 423 

the sampling depth of the moisture sensor (<0.1m bgl) and the depth of the Vp readings (2 – 4m bgl); 424 

the moisture content of the HHLO near-surface changes more quickly in relation to net infiltration and 425 

evapotranspiration rates (shown by the hourly soil moisture, faint green line) than the top 2 – 4m of the 426 

landslide, which will be less subject to evapotranspiration processes at depth. It is also worth noting 427 

that inverted velocities will be smoothed values from the true velocities, due to the spatial and temporal 428 

smoothness constraints used.  429 

Furthermore, the calculated Vp/Vs ratio (Figure 7f), which is an indicator of material saturation (Uyanık, 430 

2011), better reflects changes in moisture content. Crucially, the minimum Vp  (350 m/s) in the time-431 

series is 24% less than the maximum Vp  (462 m/s). Given that topographic effects alone can cause 432 

variations in Vp >±10%, the changes in seismic velocity over time could easily be masked if the data 433 

are not processed correctly. This demonstrates the necessity for including accurate topography in long-434 

term SRT monitoring campaigns in landslide settings. 435 
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 436 

Figure 8: The top panel shows variation in bulk Vp and Vs readings from the sliding layer at the HHLO (see Figure 7 for 437 
location of this layer). The shaded areas are the 1st and 3rd quartiles of the range in Vp and Vs. The Vp /Vs s ratio, derived from 438 
the bulk Vp and Vs readings is shown. In the bottom panel, weekly effective rainfall, showing periods of net 439 
infiltration/evapotranspiration at the HHLO, and soil moisture from a surface sensor measuring to <0.1m bgl. The variation 440 
in Vp broadly follows the increases and decreases in moisture content, while Vs shows little variation. The derived Vp /Vs s 441 
ratio shows greatest sensitivity to the moisture content of the surface sliding layer at HHLO. 442 

6. Conclusions 443 

SRT is rarely used for the long-term assessment of landslides prone to hydrological destabilization, but 444 

has much potential for high-resolution spatial monitoring. Landslide monitoring campaigns using SRT 445 

can determine seismic attributes of slipped materials, which provides information on elastic property 446 

changes due to temporal variations in moisture content. However, failing to give due attention to the 447 

possible sources of error in SRT surveys can lead to artefacts in the time-lapse data, which can easily 448 

mask changes arising from genuine variations in the elastic properties of landslide materials, including 449 

the underlying rock. We have shown how velocities in the near-surface soil layers are sensitive to 450 

variations in moisture content, but we also provide a workflow for addressing the errors associated with 451 

SRT.  452 

Standard approaches to quality assessing and processing SRT data aid in minimizing intra-survey error. 453 

The use of emerging methods to increase picking accuracy, such as automatic detection algorithms, 454 

machine learning and statistical approaches will also decrease the errors introduced in to the creation of 455 

time-lapse data from standalone surveys. For the dataset considered here, data from each survey were 456 
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processed using reciprocal error analysis to ensure e<5% of travel-time for all datasets. However, in the 457 

case of producing time-lapse data from these individual datasets, we underscore the importance of using 458 

detailed, unique topography data for processing each time-step. This crucial step could easily be 459 

overlooked by inaccurate assumptions regarding field setup, receiver spacing landslide surface 460 

movement between surveys, even by experienced SRT operators. 461 

For the dataset considered here, changes in topography lead to >±10% variations in apparent seismic 462 

velocities in 23% of the data for the unconsolidated near-surface. Our data exhibits a 24% difference 463 

between the fastest and slowest Vp observed in this layer, underscoring the need to properly account for 464 

topography effects. To avoid the errors associated with changes in topography, accurate source-receiver 465 

positions are important when processing SRT monitoring data. Several other steps, including the 466 

repositioning of receivers in the field, the use of data quality indicators (such as travel-time reciprocity) 467 

and robust reference models for inversion further reduces these errors. If these potential sources of error 468 

are managed correctly, SRT presents a useful tool for the identification of heterogeneous subsurface 469 

conditions and their changing properties over time in active landslide settings.  470 
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Appendix 547 
 548 

See below.549 
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P-wave inversions 

Stage one inversion results 

Time-step - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

χ2 - 0.982 1.495 1.952 1.345 1.478 1.138 1.434 1.358 1.848 1.573 1.288 1.316 1.258 0.982 1.157 0.992 

RMS - 2.970 3.788 4.971 4.310 4.143 4.412 4.721 5.244 5.713 5.431 4.010 3.965 3.727 3.404 4.157 3.492 

χ2 divergence  0.018 0.495 0.952 0.345 0.478 0.138 0.434 0.358 0.848 0.573 0.288 0.316 0.258 0.018 0.157 0.008 

Stage two inversion results 

Time-step Reference (best fit model from stage one) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

χ2 0.992 0.984 1.516 1.904 1.486 1.593 1.440 1.733 1.445 2.238 1.893 1.442 1.351 1.357 1.161 1.330 0.927 

RMS 3.492 3.157 3.935 4.860 4.466 4.069 5.044 4.729 5.202 5.693 5.515 4.314 3.966 4.050 3.987 4.148 3.385 

χ2 divergence 0.008 0.016 0.516 0.904 0.486 0.593 0.440 0.733 0.445 1.238 0.893 0.442 0.351 0.357 0.161 0.330 0.073 

S-wave inversions 

Stage one inversion results 

Time-step - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

χ2 - 1.117 1.416 2.061 1.959 2.654 1.991 2.499 1.563 1.771 3.822 1.614 2.873 2.517 1.910 2.179 2.100 

RMS - 1.206 1.415 1.764 1.678 2.001 1.685 1.910 1.491 1.704 1.974 1.716 2.068 1.933 1.629 1.770 1.750 

χ2 divergence  0.117 0.416 1.061 0.959 1.654 0.991 1.499 0.563 0.771 2.822 0.614 1.873 1.517 0.910 1.179 1.100 

Stage two inversion results 

Time-step Reference (best fit model from stage one) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

χ2 1.117 0.990 1.520 2.082 1.988 2.629 1.912 2.243 1.713 1.681 1.728 1.812 2.861 2.533 1.913 2.047 2.039 

RMS 1.206 1.124 1.479 1.657 1.745 2.018 1.532 1.820 1.731 1.724 1.716 2.349 2.106 2.074 1.612 1.889 1.675 

χ2 divergence 0.117 0.010 0.520 1.082 0.988 1.629 0.912 1.243 0.713 0.681 0.728 0.812 1.861 1.533 0.913 1.047 1.039 

Table 2: The results of the two-stage inversion process for both the Vp and Vs surveys. In stage one, data are inverted using the parameters in Table 1. The ‘best’ result is then assessed by looking 550 
at divergence from a perfect model fir (i.e., a normalised χ2 value, called χ2 divergence. In both the Vp and Vs inversions, the first survey (time-step 0) showed the best model fit, and was used 551 
for subsequent inversion. In stage two, this best-fit ‘reference model’ is used as the starting model, and all data are re-inverted against this, providing a real-world starting model for the time-552 
series. 553 


