204 research outputs found

    IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.

    Get PDF
    Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies

    Development of microspheres for biomedical applications: a review

    Get PDF
    An overview of microspheres manufactured for use in biomedical applications based on recent literature is presented in this review. Different types of glasses (i.e. silicate, borate, and phosphates), ceramics and polymer-based microspheres (both natural and synthetic) in the form of porous , non-porous and hollow structures that are either already in use or are currently being investigated within the biomedical area are discussed. The advantages of using microspheres in applications such as drug delivery, bone tissue engineering and regeneration, absorption and desorption of substances, kinetic release of the loaded drug components are also presented. This review also reports on the preparation and characterisation methodologies used for the manufacture of these microspheres. Finally, a brief summary of the existing challenges associated with processing these microspheres which requires further research and development are presented

    Transcriptome Profiling of Testis during Sexual Maturation Stages in Eriocheir sinensis Using Illumina Sequencing

    Get PDF
    The testis is a highly specialized tissue that plays dual roles in ensuring fertility by producing spermatozoa and hormones. Spermatogenesis is a complex process, resulting in the production of mature sperm from primordial germ cells. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. The gene expression pattern of testis in Chinese mitten crab (Eriocheir sinensis) has not been extensively studied, and limited genetic research has been performed on this species. The advent of high-throughput sequencing technologies enables the generation of genomic resources within a short period of time and at minimal cost. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for testis of E. sinensis. In two runs, we produced 25,698,778 sequencing reads corresponding with 2.31 Gb total nucleotides. These reads were assembled into 342,753 contigs or 141,861 scaffold sequences, which identified 96,311 unigenes. Based on similarity searches with known proteins, 39,995 unigenes were annotated based on having a Blast hit in the non-redundant database or ESTscan results with a cut-off E-value above 10−5. This is the first report of a mitten crab transcriptome using high-throughput sequencing technology, and all these testes transcripts can help us understand the molecular mechanisms involved in spermatogenesis and testis maturation

    Alpha-Tomatine Induces Apoptosis and Inhibits Nuclear Factor-Kappa B Activation on Human Prostatic Adenocarcinoma PC-3 Cells

    Get PDF
    BACKGROUND: Alpha-tomatine (α-tomatine) is the major saponin in tomato (Lycopersicon esculentum). This study investigates the chemopreventive potential of α-tomatine on androgen-independent human prostatic adenocarcinoma PC-3 cells. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of highly aggressive human prostate cancer PC-3 cells with α-tomatine resulted in a concentration-dependent inhibition of cell growth with a half-maximal efficient concentration (EC(50)) value of 1.67±0.3 µM. It is also less cytotoxic to normal human liver WRL-68 cells and normal human prostate RWPE-1 cells. Assessment of real-time growth kinetics by cell impedance-based Real-Time Cell Analyzer (RTCA) showed that α-tomatine exhibited its cytotoxic effects against PC-3 cells as early as an hour after treatment. The inhibitory effect of α-tomatine on PC-3 cancer cell growth was mainly due to induction of apoptosis as evidenced by positive Annexin V staining and decreased in mitochondrial membrane potential but increased in nuclear condensation, polarization of F-actin, cell membrane permeability and cytochrome c expressions. Results also showed that α-tomatine induced activation of caspase-3, -8 and -9, suggesting that both intrinsic and extrinsic apoptosis pathways are involved. Furthermore, nuclear factor-kappa B (NF-κB) nuclear translocation was inhibited, which in turn resulted in significant decreased in NF-κB/p50 and NF-κB/p65 in the nuclear fraction of the treated cells compared to the control untreated cells. These results provide further insights into the molecular mechanism of the anti-proliferative actions of α-tomatine. CONCLUSION/SIGNIFICANCE: α-tomatine induces apoptosis and inhibits NF-κB activation on prostate cancer cells. These results suggest that α-tomatine may be beneficial for protection against prostate cancer development and progression

    Regulation of CCL2 Expression by an Upstream TALE Homeodomain Protein-Binding Site That Synergizes with the Site Created by the A-2578G SNP

    Get PDF
    CC Chemokine Ligand 2 (CCL2) is a potent chemoattractant produced by macrophages and activated astrocytes during periods of inflammation within the central nervous system. Increased CCL2 expression is correlated with disease progression and severity, as observed in pulmonary tuberculosis, HCV-related liver disease, and HIV-associated dementia. The CCL2 distal promoter contains an A/G polymorphism at position -2578 and the homozygous -2578 G/G genotype is associated with increased CCL2 production and inflammation. However, the mechanisms that contribute to the phenotypic differences in CCL2 expression are poorly understood. We previously demonstrated that the -2578 G polymorphism creates a TALE homeodomain protein binding site (TALE binding site) for PREP1/PBX2 transcription factors. In this study, we identified the presence of an additional TALE binding site 22 bp upstream of the site created by the -2578 G polymorphism and demonstrated the synergistic effects of the two sites on the activation of the CCL2 promoter. Using chromatin immunoprecipitation (ChIP) assays, we demonstrated increased binding of the TALE proteins PREP1 and PBX2 to the -2578 G allele, and binding of IRF1 to both the A and G alleles. The presence of TALE binding sites that form inverted repeats within the -2578 G allele results in increased transcriptional activation of the CCL2 distal promoter while the presence of only the upstream TALE binding site within the -2578 A allele exerts repression of promoter activity

    Genome-Wide Transcriptomic Analysis of Intestinal Tissue to Assess the Impact of Nutrition and a Secondary Nematode Challenge in Lactating Rats

    Get PDF
    Gastrointestinal nematode infection is a major challenge to the health and welfare of mammals. Although mammals eventually acquire immunity to nematodes, this breaks down around parturition, which renders periparturient mammals susceptible to re-infection and an infection source for their offspring. Nutrient supplementation reduces the extent of periparturient parasitism, but the underlying mechanisms remain unclear. Here, we use a genome wide approach to assess the effects of protein supplementation on gene expression in the small intestine of periparturient rats following nematode re-infection.The use of a rat whole genome expression microarray (Affymetrix Gene 1.0ST) showed significant differential regulation of 91 genes in the small intestine of lactating rats, re-infected with Nippostrongylus brasiliensis compared to controls; affected functions included immune cell trafficking, cell-mediated responses and antigen presentation. Genes with a previously described role in immune response to nematodes, such as mast cell proteases, and intelectin, and others newly associated with nematode expulsion, such as anterior gradient homolog 2 were identified. Protein supplementation resulted in significant differential regulation of 64 genes; affected functions included protein synthesis, cellular function and maintenance. It increased cell metabolism, evident from the high number of non-coding RNA and the increased synthesis of ribosomal proteins. It regulated immune responses, through T-cell activation and proliferation. The up-regulation of transcription factor forkhead box P1 in unsupplemented, parasitised hosts may be indicative of a delayed immune response in these animals.This study provides the first evidence for nutritional regulation of genes related to immunity to nematodes at the site of parasitism, during expulsion. Additionally it reveals genes induced following secondary parasite challenge in lactating mammals, not previously associated with parasite expulsion. This work is a first step towards defining disease predisposition, identifying markers for nutritional imbalance and developing sustainable measures for parasite control in domestic mammals

    A meta-analysis of CAG (cytarabine, aclarubicin, G-CSF) regimen for the treatment of 1029 patients with acute myeloid leukemia and myelodysplastic syndrome

    Get PDF
    The regimen of cytarabine, aclarubicin and G-CSF (CAG) has been widely used in China and Japan for treatment of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). We searched literature on CAG between 1995 and 2010 and performed a meta-analysis to determine its overall efficacy using a random-effects or fixed-effects model. Thirty five trials with a total of 1029 AML (n = 814) and MDS (n = 215) patients were included for analysis. The CR rate of AML (57.9%) was significantly higher than that of MDS (45.7%) (p < 0.01). No difference in CR was noted between the new (56.7%) and relapsed/refractory AML (60.1%) (p > 0.05). The CR rate was also significantly higher in patients with favorable (64.5%) and intermediate (69.6%) karyotypes than those with unfavorable one (29.5%) (p < 0.05). Remarkably, the CR rate of CAG was significantly higher than those of non-CAG regimens (odds ratio 2.43). CAG regimen was well tolerated, with cardiotoxicity in 2.3% and early death in 5.2% of the cases. In conclusion, CAG regimen was an effective and safe regimen for the treatment of AML, and may be more effective than non-CAG regimens. Randomized controlled trials are strongly recommended to evaluate its efficacy and safety in comparison with the current standard treatment

    Molecular mechanisms of severe acute respiratory syndrome (SARS)

    Get PDF
    Severe acute respiratory syndrome (SARS) is a new infectious disease caused by a novel coronavirus that leads to deleterious pulmonary pathological features. Due to its high morbidity and mortality and widespread occurrence, SARS has evolved as an important respiratory disease which may be encountered everywhere in the world. The virus was identified as the causative agent of SARS due to the efforts of a WHO-led laboratory network. The potential mutability of the SARS-CoV genome may lead to new SARS outbreaks and several regions of the viral genomes open reading frames have been identified which may contribute to the severe virulence of the virus. With regard to the pathogenesis of SARS, several mechanisms involving both direct effects on target cells and indirect effects via the immune system may exist. Vaccination would offer the most attractive approach to prevent new epidemics of SARS, but the development of vaccines is difficult due to missing data on the role of immune system-virus interactions and the potential mutability of the virus. Even in a situation of no new infections, SARS remains a major health hazard, as new epidemics may arise. Therefore, further experimental and clinical research is required to control the disease

    MicroRNA Dysregulation in the Spinal Cord following Traumatic Injury

    Get PDF
    Spinal cord injury (SCI) triggers a multitude of pathophysiological events that are tightly regulated by the expression levels of specific genes. Recent studies suggest that changes in gene expression following neural injury can result from the dysregulation of microRNAs, short non-coding RNA molecules that repress the translation of target mRNA. To understand the mechanisms underlying gene alterations following SCI, we analyzed the microRNA expression patterns at different time points following rat spinal cord injury
    corecore