255 research outputs found

    Wetting of Al Alloys for Hot Dipping Coating Process

    Get PDF
    Wetting phenomenon, as a basic physical process, also relates to the many material processes, such as coating process, brazing or soldering process, casting, preparation of MMCs, etc. In this chapter, the method of wetting characterization at the high temperatures was presented (especially for the metallurgical melts), also the wetting behavior and mechanism of Al alloys (4043 and 6061 alloys) on the different metallic substrates at isothermal dwelling process as well as the characteristics and formation mechanism of precursor film were discussed. Thermodynamics of segregation of solute element were also discussed, which can be predicted by the thermodynamic model. We believe the content of this chapter would be a guidance for hot dipping process based on the wetting theories

    WHOLE -BRAIN AMIDE CEST IMAGING AT 3T WITH A STEADY-STATE RADIAL MRI ACQUISITION

    Get PDF
    To develop a steady-state saturation with radial readout chemical exchange saturation transfer (starCEST) for acquiring CEST images at 3 Tesla (T). The polynomial Lorentzian line-shape fitting approach was further developed for extracting amideCEST intensities at this field. StarCEST MRI using periodically rotated overlapping parallel lines with enhanced reconstruction-based spatial sampling was implemented to acquire Z- spectra that are robust to brain motion. Multi-linear singular value decomposition postprocessing was applied to enhance the CEST SNR. The egg white phantom studies were performed at 3T to reveal the contributions to the 3.5 ppm CEST signal. Based on the phantom validation, the amideCEST peak was quantified using the polynomial Lorentzian line-shape fitting, which exploits the inverse relationship be- tween Z-spectral intensity and the longitudinal relaxation rate in the rotating frame. The 3D turbo spin echo CEST was also performed to compare with the starCEST method. The amideCEST peak showed a negligible peak B1 dependence between 1.2 μT and 2.4 μT. The amideCEST images acquired with starCEST showed much improved image quality, SNR, and motion robustness compared to the conventional 3D turbo spin echo CEST method with the same scan time. The amideCEST contrast extracted by the polynomial Lorentzian line-shape fitting method trended toward a stronger gray matter signal (1.32% ± 0.30%) than white matter (0.92% ± 0.08%; P = .02, n = 5). When calculating the magnetization transfer contrast and T1-corrected rotating frame relaxation rate maps, amideCEST again was not significantly different for white matter and gray matter. Rapid multi-slice amideCEST mapping can be achieved by the starCEST method (< 5 min) at 3T by combing with the polynomial Lorentzian line-shape fitting method

    In-Situ Measurements of Temperature and Emissivity during MSW Combustion using Spectral Analysis and Multispectral Imaging Processing

    Get PDF
    By using a novel multispectral imaging technology, the 2-D distributions of flame temperature and emissivity were measured in a 16 MW incinerator to co-fire municipal solid waste (MSW) and municipal sludge. A way to establish the relationship between the multispectral flame images and the temperature was proposed by combing the Newton iteration method and Hottel emissivity model. The results showed that the measured temperatures at different locations varied by 31.25% with a fixed steam evaporation rate, and 11.76% with different steam evaporation rates at a given port. The temperatures and emissivities decreased at upper locations due to the lower local soot particle concentration and the change of the measured flame temperatures with load were correlated with the MSW caloric values. Flame temperatures near the left wall were higher than those near the right wall. This deviation was caused by the high moisture content of municipal sludge that inhibited combustion. The emissivities of flame near the right wall were lower than those near the left wall due to the low fixed carbon in municipal sludge. The normalized flame emissivities between the left and the right walls indicated that obvious differences existed in the radiative characteristics of soot, which confirmed the uneven mixing of MSW and municipal sludge. Besides, a spectrometer system was used to measure the release of alkali metal elements including Na, K during the incineration process. The characteristic spectra showed that the alkali metal radiative intensity was related to the moisture content in the wastes. Overall, these results justified that the multi-wavelength thermometry was feasible for monitoring combustion in the MSW incinerator

    Effects Of Simultaneous CO2 Addition To The Fuel And Oxidizer Streams On Soot Formation In Co-flow Diffusion Ethylene Flame

    Get PDF
    Soot formation in a co-flow diffusion ethylene flame with the addition of CO2 to the fuel (the CO2-F), oxidizer (the CO2-O), and fuel/oxidizer (the CO2-F/O) streams was numerically and experimentally investigated in this study. The effects of different CO2 addition ways on soot inception, soot condensation, H-abstraction-C2H2-addition (HACA) and oxidation by O2/OH processes, were quantitatively analyzed by introducing the integrated reaction rates over the whole computational domain. The simulated and experimental results showed that the CO2-F/O was the most effective in inhibiting soot formation and flame temperature, followed by the CO2-O, and the CO2-F. Compared with the CO2-F, the suppression effect of the CO2-O on soot inception was weaker due to the higher concentration of benzo(ghi) fluoranthene (BGHIF). Since the rate of C4H2 formation via C2H4 → C2H3 → C2H2 → C4H2 was inhibited by the CO2-O, lowering the consumption rate of acenaphthalene (A2R5) via C4H2 + A2R5=\u3eA4, more A2R5 converted to BGHIF via A2R5 → A2- → A2 → BGHIF. The suppression effects of different ways of CO2 addition on HACA surface growth and soot condensation were identical: CO2-F \u3c CO2-O \u3c CO2-F/O. The decrease of benzo(a)pyrene (BAPYR) mole fraction accounted for the decline of soot condensation rate, and the decreases of H and OH mole fractions were responsible for the drop of HACA surface growth rate. Compared with the CO2-F, the CO2-O and the CO2-F/O had stronger suppression effects on the soot oxidation by O2 process due to the lower concentration of O2 in the oxidizer stream. Whichever CO2 addition ways were adopted, the soot oxidation by O2 process was more sensitive than the soot oxidation by OH process with the CO2 addition

    Effects of Acetylene Addition to the Fuel Stream on Soot Formation and Flame Properties in an Axisymmetric Laminar Coflow Ethylene/Air Diffusion Flame

    Get PDF
    The effects of adding acetylene to the fuel stream on soot formation and flame properties were investigated numerically in a laminar axisymmetric coflow ethylene/air diffusion flame using the open-source flame code Co-Flame in conjunction with an elementary gas-phase chemistry scheme and detailed transport and thermodynamic database. Radiation heat transfer of the radiating gases (H2O, C2H2, CO, and CO2) and soot was calculated using a statistical narrow-band correlated-k-based wide band model coupled with the discrete-ordinates method. The soot formation was described by the consecutive steps of soot nucleation, surface growth of soot particles via polycyclic aromatic hydrocarbons (PAHs)-soot condensation or the hydrogen abstraction acetylene addition (HACA) mechanism, and soot oxidation. The added acetylene affected the flame structure and soot concentration through not only chemical reactions among different species but also radiation effects. The chemical effect due to the added acetylene had a significant impact on soot formation. Specifically, it was confirmed that the addition of 10% acetylene caused an increase in the peak soot volumetric fraction (SVF) by 14.9% and the peak particle number density by about 21.1% (z = 1.5 cm). Furthermore, increasing acetylene concentration led to higher concentrations of propargyl, benzene, and PAHs and consequently directly enhanced soot nucleation rates. In addition, the increased H mole fractions also accentuated the soot surface growth. In contrast, the radiation effect of the addition of 10% acetylene was much weaker, resulting in slightly lower flame temperature and SVF, which in turn reduced the radiant heat loss

    Effects of Radiation Reabsorption on the Laminar Flame Speed and NO Emission during Aviation Kerosene Combustion at Elevated Pressures

    Get PDF
    Increasing attention has been paid on combustion stability and pollution emission of aviation kerosene due to the emerging interests on supersonic combustion scramjets. Whereas the vitiation component H2O introduced by hydrogen-fueled heaters in high-enthalpy vitiated air during ground experiments has a considerable influence on kerosene combustion, especially through its radiation effect, which needs to be further investigated. In this paper, the radiation reabsorption effects on laminar flame speeds and NO emissions during RP-3/H2O/O2/N2 combustion was assessed numerically over a wide range of equivalence ratio and pressure (ϕ = 0.7–1.4 and P = 1–15 atm) using detailed chemical and radiation models. The surrogate model of RP-3 consisted of vol. 25% 1,3,5-trimethylbenzene (C9H12), 46.31% n-decane (C10H22) and 28.69% iso-dodecane (IC12H26), while the vitiated air had 12% H2O. It was revealed that the radiation reabsorption of H2O in the vitiated air had significant impact on the accurate simulation of laminar flame speeds. As equivalence ratios varied, the role of radiation reabsorption on laminar flame speeds was most pronounced at ϕ = 0.7. As the key radical, the generation of H through the reversed step of CH2OH + H = CH3 + OH was chemically inhibited due to radiation. The radiation reabsorption effect on flame speeds was strengthened with rising pressures, with the reaction H + O2 = O + OH dominant at the pressure range 1–10 atm. In contrast, a slight increase in the impact on laminar flame speeds between 10 and 15 atm was controlled by direct radiative effect. Finally, for NO emission, the reduction of downstream temperature caused by radiative heat loss and the increment of radical concentrations induced by preheating determined radiation reabsorption effects on NO generation

    A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Full text link
    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method

    Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site

    Get PDF
    We introduce a novel method to screen the promoters of a set of genes with shared biological function, against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. The gene sets were obtained from the functional Gene Ontology (GO) classification; for each set and motif we optimized the sequence similarity score threshold, independently for every location window (measured with respect to the TSS), taking into account the location dependent nucleotide heterogeneity along the promoters of the target genes. We performed a high throughput analysis, searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology classes and for 412 known DNA motifs. When combined with binding site and location conservation between human and mouse, the method identifies with high probability functional binding sites that regulate groups of biologically related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were put to several experimental tests. By allowing a "flexible" threshold and combining our functional class and location specific search method with conservation between human and mouse, we are able to identify reliably functional TF binding sites. This is an essential step towards constructing regulatory networks and elucidating the design principles that govern transcriptional regulation of expression. The promoter region proximal to the TSS appears to be of central importance for regulation of transcription in human and mouse, just as it is in bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure
    • …
    corecore