40 research outputs found

    Analysis of the XRCCI gene as a modifier of the cerebral response in ischemic stroke

    Get PDF
    Background: Although there have been studies of the genetic risk factors in the development of stroke, there have been few investigations of role of genes in the cerebral response to ischemia. The brain responds to ischemia in a series of reactions that ultimately influence the volume of a stroke that, in general, correlates with disability. We hypothesize that polymorphisms in genes encoding proteins involved in these reactions could act as modifiers of this response and impact stroke volume. One of the pathways participating in the cerebral ischemic response involves reactive oxygen species which can cause oxidative damage to nucleic acids. DNA repair mechanisms are in place to protect against such damage and imply a role for DNA repair genes in the response of the brain to ischemia and are potential candidate genes for further investigation. Methods: We studied two common polymorphisms in the DNA repair gene, XRCC1, C26304T and G28152A, in 134 well characterized patients with non lacunar ischemic strokes. We also performed a case control association study with 113 control patients to assess whether these variants represent risk factors in the development of ischemic stroke. Results: Independent of etiology, the T allele of the C26304T polymorphism is significantly associated with larger stroke volumes (T-test analysis, p < 0.044; multivariate regression analysis, beta = 0.23, p < 0.008). In the case control association study, we found that neither of these polymorphisms represented a risk factor for the development of stroke. Conclusion: Our study suggests a major gene effect of the T allele of the C26304T polymorphism modulating the cerebral response to ischemia in non lacunar ischemic stroke

    ITPKC Single Nucleotide Polymorphism Associated with the Kawasaki Disease in a Taiwanese Population

    Get PDF
    Kawasaki disease (KD) is characterized by systemic vasculitis with unknown etiology. Previous studies from Japan indicated that a gene polymorphism of ITPKC (rs28493229) is responsible for susceptibility to KD. We collected DNA samples from 1,531 Taiwanese subjects (341 KD patients and 1,190 controls) for genotyping ITPKC. In this study, no significant association was noted for the ITPKC polymorphism (rs28493229) between the controls and KD patients, although the CC genotype was overrepresented. We further combined our data with previously published case/control KD studies in the Taiwanese population and performed a meta-analysis. A significant association between rs28493229 and KD was found (Odds Ratio:1.36, 95% Confidence Interval 1.12–1.66). Importantly, a significant association was obtained between rs28493229 and KD patients with aneurysm formation (P = 0.001, under the recessive model). Taken together, our results indicated that C-allele of ITPKC SNP rs28493229 is associated with the susceptibility and aneurysm formation in KD patients in a Taiwanese population

    Sex-differential genetic effect of phosphodiesterase 4D (PDE4D) on carotid atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The phosphodiesterase 4D (PDE4D) gene was reported as a susceptibility gene to stroke. The genetic effect might be attributed to its role in modulating the atherogenic process in the carotid arteries. Using carotid intima-media thickness (IMT) and plaque index as phenotypes, the present study sought to determine the influence of this gene on subclinical atherosclerosis.</p> <p>Methods</p> <p>Carotid ultrasonography was performed on 1013 stroke-free subjects who participated in the health screening programs (age 52.6 ± 12.2; 47.6% men). Genotype distribution was compared among the high-risk (plaque index ≥ 4), low-risk (index = 1-3), and reference (index = 0) groups. We analyzed continuous IMT data and further dichotomized IMT data using mean plus one standard deviation as the cutoff level. Because the plaque prevalence and IMT values displayed a notable difference between men and women, we carried out sex-specific analyses in addition to analyzing the overall data. Rs702553 at the PDE4D gene was selected because it conferred a risk for young stroke in our previous report. Previous young stroke data (190 cases and 211 controls) with an additional 532 control subjects without ultrasonic data were shown as a cross-validation for the genetic effect.</p> <p>Results</p> <p>In the overall analyses, the rare homozygote of rs702553 led to an OR of 3.1 (p = 0.034) for a plaque index ≥ 4. When subjects were stratified by sex, the genetic effect was only evident in men but not in women. Comparing male subjects with plaque index ≥ 4 and those with plaque index = 0, the TT genotype was over-represented (27.6% vs. 13.4%, p = 0.008). For dichotomized IMT data in men, the TT genotype had an OR of 2.1 (p = 0.032) for a thicker IMT at the common carotid artery compared with the (AA + AT) genotypes. In women, neither IMT nor plaque index was associated with rs702553. Similarly, SNP rs702553 was only significant in young stroke men (OR = 1.8, p = 0.025) but not in women (p = 0.27).</p> <p>Conclusions</p> <p>The present study demonstrates a sex-differential effect of PDE4D on IMT, plaque index and stroke, which highlights its influence on various aspects of atherogenesis.</p

    Computational Analysis of mRNA Expression Profiles Identifies MicroRNA-29a/c as Predictor of Colorectal Cancer Early Recurrence

    Get PDF
    Colorectal cancer (CRC) is one of the leading malignant cancers with a rapid increase in incidence and mortality. The recurrences of CRC after curative resection are sometimes unavoidable and often take place within the first year after surgery. MicroRNAs may serve as biomarkers to predict early recurrence of CRC, but identifying them from over 1,400 known human microRNAs is challenging and costly. An alternative approach is to analyze existing expression data of messenger RNAs (mRNAs) because generally speaking the expression levels of microRNAs and their target mRNAs are inversely correlated. In this study, we extracted six mRNA expression data of CRC in four studies (GSE12032, GSE17538, GSE4526 and GSE17181) from the gene expression omnibus (GEO). We inferred microRNA expression profiles and performed computational analysis to identify microRNAs associated with CRC recurrence using the IMRE method based on the MicroCosm database that includes 568,071 microRNA-target connections between 711 microRNAs and 20,884 gene targets. Two microRNAs, miR-29a and miR-29c, were disclosed and further meta-analysis of the six mRNA expression datasets showed that these two microRNAs were highly significant based on the Fisher p-value combination (p = 9.14×10−9 for miR-29a and p = 1.14×10−6 for miR-29c). Furthermore, these two microRNAs were experimentally tested in 78 human CRC samples to validate their effect on early recurrence. Our empirical results showed that the two microRNAs were significantly down-regulated (p = 0.007 for miR-29a and p = 0.007 for miR-29c) in the early-recurrence patients. This study shows the feasibility of using mRNA profiles to indicate microRNAs. We also shows miR-29a/c could be potential biomarkers for CRC early recurrence

    ORAI1 Genetic Polymorphisms Associated with the Susceptibility of Atopic Dermatitis in Japanese and Taiwanese Populations

    Get PDF
    Atopic dermatitis is a chronic inflammatory skin disease. Multiple genetic and environmental factors are thought to be responsible for susceptibility to AD. In this study, we collected 2,478 DNA samples including 209 AD patients and 729 control subjects from Taiwanese population and 513 AD patients and 1027 control subject from Japanese population for sequencing and genotyping ORAI1. A total of 14 genetic variants including 3 novel single-nucleotide polymorphisms (SNPs) in the ORAI1 gene were identified. Our results indicated that a non-synonymous SNP (rs3741596, Ser218Gly) associated with the susceptibility of AD in the Japanese population but not in the Taiwanese population. However, there is another SNP of ORAI1 (rs3741595) associated with the risk of AD in the Taiwanese population but not in the Japanese population. Taken together, our results indicated that genetic polymorphisms of ORAI1 are very likely to be involved in the susceptibility of AD

    Early functional improvement after stroke correlates with cardiovascular fitness

    No full text
    Cardiovascular fitness exerts directly beneficial effects on functional and cognitive outcomes in patients of chronic stroke. However, the effect of early rehabilitation on cardiovascular function has not yet been thoroughly examined. We tested whether complementary rehabilitation program could influence cardiovascular fitness in an early stage of stroke patients. The associations for post-acute stroke functional recovery with cardiovascular fitness were explored. Thirty-seven patients with mean poststroke interval of 8.6 ± 3.8 days underwent inpatient rehabilitation of 22.8 ± 3.8 days. Functional outcomes of 15.3 points (17.2%) in functional independence measure improved after rehabilitation program. The therapeutic cardiovascular fitness was determined in ramp exercise test on a cycling ergometer. Peak oxygen uptake (V˙O2peak) significantly increased by 24.8% after early stroke rehabilitation. Multivariate regression analysis was performed to assess for associations of functional improvement with respect to change in V˙O2peak and extremities motor impairment. V˙O2peak gain accounted for more functional recovery than extremities motor improvement (R2 = 0.42). In conclusion, these results suggest that cardiovascular fitness appears to increase after complementary program in early stroke rehabilitation, and better cardiovascular fitness may be associated with greater functional improvement. Keywords: Fitness, Oxygen uptake, Rehabilitation, Strok
    corecore