50 research outputs found

    Incidence and risk factors of subsyndromal delirium after curative resection of gastric cancer

    Get PDF
    Background: Subsyndromal delirium, a condition in which patients exhibit some, but not all, of the symptoms of delirium, can negatively affect the outcomes of patients with cancer. However, the incidence of subsyndromal delirium in patients with gastric cancer is unknown. Here, we investigated the incidence and risk factors of subsyndromal delirium after curative resection of gastric cancer. Methods: We recruited consecutive patients with gastric cancer who were scheduled for curative resection at a tertiary hospital. Patients' subsyndromal delirium symptoms were serially assessed preoperatively and 1, 2, 3, and 7 days postoperatively using the Delirium Rating Scale-Revised-98 (DRS-R-98). A DRS-R-98 score of 8-14 at any postoperative assessment was considered to indicate subsyndromal delirium. Sociodemographic and pre-/intraoperative clinical data were also assessed. Logistic regression analyses were used to determine the associated risk factors. Results: Data were analysed from 163 out of 217 eligible patients. Postoperative delirium occurred in one patient (0.6%) and subsyndromal delirium occurred in 19 patients (11.7%). Age >= 70 years (odds ratio, [OR] 3.85; 95% confidence interval [0], 136-10.92; p = 0.011) and education level <= 9 years (OR, 3.98; 95% CI, 139-11.41; p= 0.010) were independent risk factors of subsyndromal delirium after adjusting for preoperative cognitive function. Other pre-/intra-operative variables including anxiety/depression, poor sleep quality, and anaesthesia duration were not associated with subsyndromal delirium. Conclusions: In contrast to the low incidence of delirium among patients undergoing curative resection of gastric cancer, a substantial proportion of such patients experienced subsyndromal delirium. Considering the prognostic implications, more careful detection and management of subsyndromal delirium may be warranted in patients with gastric cance

    A novel treatment strategy for lapatinib resistance in a subset of HER2-amplified gastric cancer

    Get PDF
    Background Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Human epidermal growth factor receptor 2 (HER2) amplification occurs in approximately 13–23% of all GC cases and patients with HER2 overexpression exhibit a poor prognosis. Lapatinib, a dual EGFR/HER2 tyrosine kinase inhibitor, is an effective agent to treat HER2-amplified breast cancer but it failed in gastric cancer (GC) clinical trials. However, the molecular mechanism of lapatinib resistance in HER2-amplified GC is not well studied. Methods We employed an unbiased, genome-scale screening with pooled CRISPR library on HER2-amplified GC cell lines to identify genes that are associated with resistance to lapatinib. To validate the candidate genes, we applied in vitro and in vivo pharmacological tests to confirm the function of the target genes. Results We found that loss of function of CSK or PTEN conferred lapatinib resistance in HER2-amplified GC cell lines NCI-N87 and OE19, respectively. Moreover, PI3K and MAPK signaling was significantly increased in CSK or PTEN null cells. Furthermore, in vitro and in vivo pharmacological study has shown that lapatinib resistance by the loss of function of CSK or PTEN, could be overcome by lapatinib combined with the PI3K inhibitor copanlisib and MEK inhibitor trametinib. Conclusions Our study suggests that loss-of-function mutations of CSK and PTEN cause lapatinib resistance by re-activating MAPK and PI3K pathways, and further proved these two pathways are druggable targets. Inhibiting the two pathways synergistically are effective to overcome lapatinib resistance in HER2-amplified GC. This study provides insights for understanding the resistant mechanism of HER2 targeted therapy and novel strategies that may ultimately overcome resistance or limited efficacy of lapatinib treatment for subset of HER2 amplified GC.This study is supported in part by the operational funds from The First Affiliated Hospital of Xian Jiaotong University. C. Lee was a distinguished Ewha Womans University Professor supported in part by the Ewha Womans University Research grant of 2017–2019

    KRAS activation in gastric cancer stem-like cells promotes tumor angiogenesis and metastasis

    Get PDF
    Abstract Our previous work showed that KRAS activation in gastric cancer cells leads to activation of an epithelial-to-mesenchymal transition (EMT) program and generation of cancer stem-like cells (CSCs). Here we analyze how this KRAS activation in gastric CSCs promotes tumor angiogenesis and metastasis. Gastric cancer CSCs were found to secrete pro-angiogenic factors such as vascular endothelial growth factor A (VEGF-A), and inhibition of KRAS markedly reduced secretion of these factors. In a genetically engineered mouse model, gastric tumorigenesis was markedly attenuated when both KRAS and VEGF-A signaling were blocked. In orthotropic implant and experimental metastasis models, silencing of KRAS and VEGF-A using shRNA in gastric CSCs abrogated primary tumor formation, lymph node metastasis, and lung metastasis far greater than individual silencing of KRAS or VEGF-A. Analysis of gastric cancer patient samples using RNA sequencing revealed a clear association between high expression of the gastric CSC marker CD44 and expression of both KRAS and VEGF-A, and high CD44 and VEGF-A expression predicted worse overall survival. In conclusion, KRAS activation in gastric CSCs enhances secretion of pro-angiogenic factors and promotes tumor progression and metastasis.This study was funded by NIH/NCI grant P30 CA008748, the DeGregorio Family Foundation, and Stand Up To Cancer

    Predictive biomarkers for 5-fluorouracil and oxaliplatin-based chemotherapy in gastric cancers via profiling of patient-derived xenografts.

    Get PDF
    Gastric cancer (GC) is commonly treated by chemotherapy using 5-fluorouracil (5-FU) derivatives and platinum combination, but predictive biomarker remains lacking. We develop patient-derived xenografts (PDXs) from 31 GC patients and treat with a combination of 5-FU and oxaliplatin, to determine biomarkers associated with responsiveness. When the PDXs are defined as either responders or non-responders according to tumor volume change after treatment, the responsiveness of PDXs is significantly consistent with the respective clinical outcomes of the patients. An integrative genomic and transcriptomic analysis of PDXs reveals that pathways associated with cell-to-cell and cell-to-extracellular matrix interactions enriched among the non-responders in both cancer cells and the tumor microenvironment (TME). We develop a 30-gene prediction model to determine the responsiveness to 5-FU and oxaliplatin-based chemotherapy and confirm the significant poor survival outcomes among cases classified as non-responder-like in three independent GC cohorts. Our study may inform clinical decision-making when designing treatment strategies

    Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts

    Get PDF
    Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accuracy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.</p

    A development of assistant surgical robot system based on surgical-operation-by-wire and hands-on-throttle-and-stick

    Get PDF
    BACKGROUND: Robot-assisted laparoscopic surgery offers several advantages compared with open surgery and conventional minimally invasive surgery. However, one issue that needs to be resolved is a collision between the robot arm and the assistant instrument. This is mostly caused by miscommunication between the surgeon and the assistant. To resolve this limitation, an assistant surgical robot system that can be simultaneously manipulated via a wireless controller is proposed to allow the surgeon to control the assistant instrument. METHODS: The system comprises two novel master interfaces (NMIs), a surgical instrument with a gripper actuated by a micromotor, and 6-axis robot arm. Two NMIs are attached to master tool manipulators of da Vinci research kit (dVRK) to control the proposed system simultaneously with patient side manipulators of dVRK. The developments of the surgical instrument and NMI are based on surgical-operation-by-wire concept and hands-on-throttle-and-stick concept from the earlier research, respectively. Tests for checking the accuracy, latency, and power consumption of the NMI are performed. The gripping force, reaction time, and durability are assessed to validate the surgical instrument. The workspace is calculated for estimating the clinical applicability. A simple peg task using the fundamentals of laparoscopic surgery board and an in vitro test are executed with three novice volunteers. RESULTS: The NMI was operated for 185 min and reflected the surgeon’s decision successfully with a mean latency of 132 ms. The gripping force of the surgical instrument was comparable to that of conventional systems and was consistent even after 1000 times of gripping motion. The reaction time was 0.4 s. The workspace was calculated to be 8397.4 cm(3). Recruited volunteers were able to execute the simple peg task within the cut-off time and successfully performed the in vitro test without any collision. CONCLUSIONS: Various experiments were conducted and it is verified that the proposed assistant surgical robot system enables collision-free and simultaneous operation of the dVRK’s robot arm and the proposed assistant robot arm. The workspace is appropriate for the performance of various kinds of surgeries. Therefore, the proposed system is expected to provide higher safety and effectiveness for the current surgical robot system

    A development of assistant surgical robot system based on surgical-operation-by-wire and hands-on-throttle-and-stick

    Get PDF
    Background Robot-assisted laparoscopic surgery offers several advantages compared with open surgery and conventional minimally invasive surgery. However, one issue that needs to be resolved is a collision between the robot arm and the assistant instrument. This is mostly caused by miscommunication between the surgeon and the assistant. To resolve this limitation, an assistant surgical robot system that can be simultaneously manipulated via a wireless controller is proposed to allow the surgeon to control the assistant instrument. Methods The system comprises two novel master interfaces (NMIs), a surgical instrument with a gripper actuated by a micromotor, and 6-axis robot arm. Two NMIs are attached to master tool manipulators of da Vinci research kit (dVRK) to control the proposed system simultaneously with patient side manipulators of dVRK. The developments of the surgical instrument and NMI are based on surgical-operation-by-wire concept and hands-on-throttle-and-stick concept from the earlier research, respectively. Tests for checking the accuracy, latency, and power consumption of the NMI are performed. The gripping force, reaction time, and durability are assessed to validate the surgical instrument. The workspace is calculated for estimating the clinical applicability. A simple peg task using the fundamentals of laparoscopic surgery board and an in vitro test are executed with three novice volunteers. Results The NMI was operated for 185 min and reflected the surgeons decision successfully with a mean latency of 132 ms. The gripping force of the surgical instrument was comparable to that of conventional systems and was consistent even after 1000 times of gripping motion. The reaction time was 0.4 s. The workspace was calculated to be 8397.4 cm3. Recruited volunteers were able to execute the simple peg task within the cut-off time and successfully performed the in vitro test without any collision. Conclusions Various experiments were conducted and it is verified that the proposed assistant surgical robot system enables collision-free and simultaneous operation of the dVRKs robot arm and the proposed assistant robot arm. The workspace is appropriate for the performance of various kinds of surgeries. Therefore, the proposed system is expected to provide higher safety and effectiveness for the current surgical robot system

    Should total omentectomy be performed for advanced gastric cancer?: The role of omentectomy during laparoscopic gastrectomy for advanced gastric cancer

    No full text
    © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Background: In the era of minimally invasive surgery, laparoscopic partial omentectomy (LPO) has seen widespread use as a curative surgical procedure for early gastric cancer. However, scientific evidence of the extent of omentectomy during laparoscopic gastrectomy remains unclear for advanced gastric cancer (AGC). Methods: We analyzed 666 eligible patients who underwent laparoscopic gastrectomy for AGC with curative intent between 2014 and 2018. Surgical outcome and postoperative prognosis were compared between LPO and laparoscopic total omentectomy (LTO) groups after 2:1 propensity score matching with age, sex, body mass index, tumor size, pT stage, pN stage, gastrectomy type, and clinical T stage as covariates. Results: After extensive matching, there was no significant difference in pathologic or clinical stages between the LPO (n = 254) and LTO (n = 177) groups. LPO provided a significantly shorter operation time than LTO (199.2 ± 64.8 vs. 248.1 ± 68.3 min, P &lt; 0.001). Pulmonary complication within postoperative 30 days was significantly lower in the LPO group (4.4 vs. 10.3%, P = 0.018). In multivariate analysis, LTO was the independent risk factor for pulmonary complication (odds ratio [OR] 2.53, 95% confidence interval [95% CI] 1.12–5.73, P = 0.025), which became more obvious in patients with a Charlson’s comorbidity index of 4 or higher (OR 27.43, 95% CI 1.35–558.34, P = 0.031). The 5-year overall survival rate (OS) and 3-year recurrence-free survival (RFS) rates were not significantly different between the two groups, even after stage stratification. Conclusion: LPO provided significantly shorter operation time and less pulmonary complication than LTO without compromising 5-year OS and 3-year RFS for AGC. LTO was the independent risk factor for pulmonary complications, which became more evident in patients with severe comorbidities.N

    Comprehensive analysis of alternative splicing in gastric cancer identifies epithelial-mesenchymal transition subtypes associated with survival.

    Get PDF
    Alternatively spliced RNA isoforms are a hallmark of tumors, but their nature, prevalence, and clinical implications in gastric cancer have not been comprehensively characterized. We systematically profiled the splicing landscape of 83 gastric tumors and matched normal mucosa, identifying and experimentally validating eight splicing events that can classify all gastric cancers into three subtypes: epithelial-splicing, mesenchymal-splicing, and hybrid-splicing. These subtypes were associated with distinct molecular signatures and epithelial-mesenchymal transition markers. Subtype-specific splicing events were enriched in motifs for splicing factors RBM24 and ESRP1, which were upregulated in mesenchymal-splicing and epithelial-splicing tumors, respectively. A simple classifier based only on RNA levels of RBM24 and ESRP1, which can be readily implemented in the clinic, was sufficient to distinguish gastric cancer subtypes and predict patient survival in multiple independent patient cohorts. Overall, this study provides insights into alternative splicing in gastric cancer and the potential clinical utility of splicing-based patient classification
    corecore