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Human tumors engrafted into transplant-compliant recipient 
mice (patient-derived xenografts (PDXs)) have advantages 
over previous model systems of human cancer (for example, 

genetically engineered mouse models1,2 and cancer cell lines3) for 
preclinical drug efficacy studies because they allow researchers to 
directly study human cells and tissues in vivo4–7. Comparisons of 
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Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. 
It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accu-
racy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched 
patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed 
substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA 
conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late 
trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific 
CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion 
samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.

NATuRE GENETICS | VOL 53 | JANUARY 2021 | 86–99 | www.nature.com/naturegenetics86

mailto:enzo.medico@unito.it
mailto:jeff.chuang@jax.org
http://orcid.org/0000-0002-5980-4383
http://orcid.org/0000-0003-0204-8158
http://orcid.org/0000-0002-5398-0802
http://orcid.org/0000-0002-7141-8354
http://orcid.org/0000-0002-6732-2966
http://orcid.org/0000-0002-3429-302X
http://orcid.org/0000-0001-6620-1065
http://orcid.org/0000-0002-3337-6448
http://orcid.org/0000-0002-7240-3744
http://orcid.org/0000-0002-7621-9717
http://orcid.org/0000-0002-3475-4850
http://orcid.org/0000-0002-1412-1351
http://orcid.org/0000-0002-8955-1313
http://orcid.org/0000-0003-0839-0739
http://orcid.org/0000-0002-0977-0912
http://orcid.org/0000-0002-0479-1693
http://orcid.org/0000-0002-6379-3365
http://orcid.org/0000-0002-9264-9792
http://orcid.org/0000-0002-3917-2438
http://orcid.org/0000-0002-3298-2358
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-020-00750-6&domain=pdf
http://www.nature.com/naturegenetics


ArticlesNATurE GENETICs

genome characteristics and histopathology of primary tumors and 
xenografts of various cancer types8–14 have demonstrated that the 
biological properties of patient-derived tumors are largely pre-
served in xenografts. A growing body of literature supports their 
use in cancer drug discovery and development15–17.

A caveat to PDX models is that intratumoral evolution can occur 
during engraftment and passaging18–22. Such evolution could poten-
tially modify treatment response of PDXs with respect to the patient 
tumors (PTs)19,23,24, particularly if the evolution were to systemati-
cally alter cancer-related genes. Recently, Ben-David et al.23 reported 
extensive PDX copy number divergence from the PT of origin and 
across passages, based mainly on large-scale assessment of copy 
number alteration (CNA) profiles inferred from gene expression 
microarray data. They raised concerns about genetic evolution in 
PDXs as a consequence of mouse-specific selective pressures, which 
could impact the capacity of PDXs to faithfully model patient treat-
ment response. Such results contrast with reports of observations 
of genomic fidelity of PDX models with respect to the originating 
PTs and from early to late passages by direct DNA measurements in 
several dozen PDX models8,11,25.

Here, we resolve these contradicting observations by sys-
tematically evaluating CNA changes and the genes they affect 
during engraftment and passaging in a large, internationally col-
lected set of PDX models, comparing both RNA- and DNA-based 
approaches. The data collected, as part of the US National Cancer 
Institute (NCI) PDX Development and Trial Centers Research 
Network (PDXNet) Consortium and EurOPDX Consortium, 
comprises PT and PDX samples from >500 models. Our study 
demonstrates that previous reports of systematic copy number 
divergence between PTs and PDXs are incorrect, and that there 
is high retention of copy number during PDX engraftment and 
passaging. This work also finely enumerates the copy number pro-
files in hundreds of publicly available models, which will enable 
researchers to assess the suitability of each for individualized 
treatment studies.

Results
Catalog of CNAs in PDXs. We have assembled CNA profiles of 
1,451 unique samples (324 PT samples and 1,127 PDX samples), cor-
responding to 509 PDX models contributed by participating centers 
of the PDXNET, the EurOPDX Consortium and other published 
datasets11,26 (see Methods, Supplementary Methods, Supplementary 
Table 1 and Supplementary Fig. 1). We estimated the copy number 
from five data types (single nucleotide polymorphism (SNP) array, 
whole-exome sequencing (WES), low-pass whole-genome sequenc-
ing (WGS), RNA sequencing (RNA-seq) and gene expression array 
data), yielding 1,548 tumor datasets including samples assayed on 
multiple platforms (see Methods, Supplementary Methods and 
Supplementary Data 1). Paired normal DNA, and in some cases 
paired normal RNA, were also obtained to calibrate WES and 
RNA-seq tumor samples.

The combined PDX data represent 16 broad tumor types 
derived from American, European and Asian patients with can-
cer (see Methods), with 64% (n = 324) of the models having their 
corresponding PTs assayed and another 64% (n = 328) having 
multiple PDX samples of either varying passages (P0–P21) or 
varying lineages from propagation into distinct mice (Fig. 1a and 
Supplementary Table 2). The distributions of PT and PDX sam-
ples across different tumor types, passages and assay platforms  
(Fig. 1b and Supplementary Figs. 2–12) show the wide spectrum of 
this combined dataset, which, to the best of our knowledge, is the 
most comprehensive copy number profiling of PDXs compiled to 
date (Supplementary Note 1). Additionally, our data include seven 
patients with multiple tumors collected either from different relapse 
time points or different metastatic sites, resulting in multiple PDX 
models derived from a single patient.

Comparison of CNA profiles from SNP array, WES and gene 
expression data. To compare the CNA profiles from different plat-
forms in a controlled fashion, we assembled a dataset with matched 
measurements across multiple platforms (Supplementary Table 3 
and Supplementary Figs. 13–17). Copy number calling has been 
reported to be noisy for several data types27,28, and we observed that 
quantitative comparisons between CNA profiles are sensitive to: (1) 
the thresholds and baselines used to define gains and losses; (2) the 
dynamic range of copy number values from each platform; and (3) 
the differential impacts of normal cell contamination for different 
measurements. To control for such systematic biases, we assessed 
the similarity between two CNA profiles using the Pearson correla-
tion of their log2[copy number ratio] values across the genome in 
100-kilobase (kb) windows. Regions with discrepant copy number 
were identified as those with outlier values from the linear regres-
sion model (see Methods).

CNAs from WES are consistent with CNAs from SNP array data. 
As earlier studies reported that CNA estimates from WES data 
have more uncertainties than those from SNP arrays29,30, we 
implemented a WES-based CNA pipeline and validated it against 
SNP array-based estimates31,32 for matched samples. Copy num-
ber gain/loss segments (see Methods) from SNP arrays were of a 
higher resolution (Fig. 2a; median and mean segment sizes = 1.49 
and 4.05 megabases (Mb) for SNP and 4.70 and 14.6 Mb for WES, 
respectively; P < 2.2 × 10−16) and wider dynamic range (Fig. 2b; 
range of log2[copy number ratio] = –8.62–2.84 for SNP and –3.04–
1.85 for WES; P < 2.2 × 10−16). The difference in range is apparent in 
the linear regressions between platforms (Supplementary Fig. 18). 
These observations take into account the broad factors affecting 
CNA estimates across platforms, such as the positional distribution 
of sequencing loci, the sequencing depth of WES and the superior 
removal of normal cell contamination by SNP array CNA analysis 
workflows using SNP allele frequencies33.

We observed strong agreement between SNP arrays and WES, 
with significantly higher Pearson correlation coefficients on 
matched samples than samples of different models (range = 0.913–
0.957 for matched samples and 0.0366–0.354 for unmatched sam-
ples; P = 1.02 × 10−6), with the exception of two samples that lacked 
CNA aberrations and were removed (Fig. 2c and Supplementary 
Figs. 13, 18 and 19). The discordant copy number regions largely 
correspond to small focal events (average size = 1.53 Mb) detect-
able by SNP arrays but missed by WES (Supplementary Fig. 18 
and Extended Data Fig. 1a; see Methods). Hence, CNA profiling by 
WES is reliable in most regions in this small dataset, with 99% of 
the genome locations across the samples consistent with the values 
from SNP arrays (Supplementary Note 2). These PT-based observa-
tions are also applicable to PDXs given that mouse DNA is absent in 
SNP array signal and removed from WES reads34–36.

Low accuracy for gene expression-derived CNA profiles. To com-
pare the suitability of gene expression for quantifying evolution-
ary changes in CNA, we adapted the e-karyotyping method23,37,38 
for RNA-seq and gene expression array data (Supplementary Figs. 
15 and 17; see Methods). Copy number segments calibrated by 
non-tumor expression were of higher resolution (Fig. 2a; median 
and mean segment sizes = 36.0 and 51.9 Mb for RNASEQ NORM 
versus 48.2 and 65.3 Mb for RNASEQ TUM (P < 2.2 × 10−16) and 
62.0 and 72.4 Mb for EXPARR NORM versus 80.1 and 85.2 Mb for 
EXPARR TUM (P = 2.20 × 10−7), where RNASEQ and EXPARR 
relate to RNA-seq and gene expression array, respectively, and 
NORM and TUM relate to normalization by median expression of 
normal and tumor samples, respectively) and a wider dynamic range 
(Fig. 2b; range of log2[copy number ratio] = –2.07–2.17 for RNASEQ 
NORM versus –1.79–1.81 for RNASEQ TUM (P < 2.2 × 10−16) and 
–1.40–1.89 for EXPARR NORM versus –1.13–1.59 for EXPARR 
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Fig. 1 | PDX datasets used for copy number profiling across 16 tumor types. a, Numbers of PDX models for each tumor type, with models also having 
multiple PDX samples or having matched PT samples specified. b, Distributions of datasets by passage number and assay platform for PTs and PDX 
samples, separated by tumor type. Late passages include P18, P19 and P21 samples.
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TUM (P = 4.09 × 10−7)) compared with segments calculated by cali-
bration with tumor samples. These alternative expression calibra-
tions yielded biased gain and loss frequencies (Supplementary Note 
3 and Supplementary Fig. 20) and strong variability (Pearson cor-
relation range = 0.218–0.943 for RNASEQ NORM versus TUM and 
0.377–0.869 for EXPARR NORM versus TUM) in the CNA calls  
(Fig. 2c and Supplementary Fig. 21). This range of correlations 
was far greater than was observed in comparisons between the 
DNA-based methods (P = 9.37 × 10−5 and P = 3.28 × 10−7 rela-
tive to SNP versus WES). This indicates the problematic nature of 
RNA-based CNA calling with calibration by tumor samples, which 
has been used when normal samples are not available.

Furthermore, expression-based calling had segmental resolu-
tion an order of magnitude worse than the DNA-based methods 
(Fig. 2a and Supplementary Figs. 14–17; median and mean seg-
ment sizes = 3.45 and 14.0 Mb for WES versus 36.0 and 51.9 Mb for 
RNASEQ NORM (P < 2.2 × 10−16) and 1.73 and 5.18 Mb for SNP 
versus 62.0 and 72.4 Mb for EXPARR NORM (P < 2.2 × 10−16)). 
The range of detectable copy number values was also supe-
rior for DNA-based methods (Fig. 2b; range of log2[copy num-
ber ratio] = –6.00–5.33 for WES versus –2.07–2.17 for RNASEQ 
NORM (P < 2.2 × 10−16) and –9.19–4.65 for SNP versus –1.40–1.89 
for EXPARR NORM (P < 2.2 × 10−16)). In addition, there was a 
lack of correlation between the expression-based and DNA-based 
methods (range = 0.0541–0.942 for WES versus RNASEQ NORM 
and 0.00517–0.921 for SNP versus EXPARR NORM) (Fig. 
2c and Supplementary Figs. 22 and 23). CNA estimates after 
tumor-based expression normalization resulted in further discor-
dance with DNA-based copy number results (range = −0.182–0.929 
(P = 0.0468) for WES versus RNASEQ TUM and −0.0274–0.847 
(P = 2.20 × 10−6) for SNP versus EXPARR TUM). Many focal copy 
number events detected by DNA-based methods, as well as some 
larger segments, were missed by the expression-based methods 
(Extended Data Fig. 1b–e). Representative examples illustrating the 
superior resolution and accuracy from DNA-based estimates are 
given in Fig. 2d (correlations are shown in Extended Data Fig. 2).

Concordance of PDXs with PTs and during passaging. Next, 
we adopted a pan-cancer approach to elucidate potential tumor 
type-independent copy number evolution in PDXs driven by the 
mouse host. We tracked the similarity of CNA profiles during tumor 
engraftment and passaging by calculating the Pearson correlation of 
gene-level copy number for samples measured on the same platform 
(see Methods, Extended Data Fig. 3 and Supplementary Figs. 24–60 
and 62). All pairs of samples derived from the same PDX model 
were compared, yielding 501 PT–PDX pairs and 1,257 PDX–PDX 
pairs (Supplementary Note 4).

For all DNA-based platforms, we observed strong concor-
dance between matched PT–PDX and PDX–PDX pairs, and this 
was significantly higher than between different models from the 
same tumor type and the same center (P < 2.2 × 10−16) (Fig. 3a–c 
and correlation heatmaps in Supplementary Figs. 24–60). We 
observed no significant difference in the correlation values between 

PT–PDX and PDX–PDX pairs for SNP array data (median cor-
relation = 0.950 for PT–PDX and 0.964 for PDX–PDX; P > 0.05), 
although there were small but statistically significant shifts for 
WES (PT–PDX = 0.874; PDX–PDX = 0.936; P = 2.31 × 10−16) and 
WGS data (PT–PDX = 0.914; PDX–PDX = 0.931; P = 0.000299). 
PT samples have a smaller CNA range than their derived PDXs 
(median ratios for PT/PDX and PDX/PDX, respectively = 0.832 and 
0.982 (P = 0.000120) for SNP, 0.626 and 0.996 (P < 2.2 × 10−16) for 
WES and 0.667 and 1.00 (P < 2.2 × 10−16) for WGS; Supplementary  
Fig. 62b and Extended Data Fig. 4), which can be attributed to 
stromal DNA in PT samples diluting the CNA signal. In PDXs, the 
human stromal DNA is reduced11,13. The minimal effect for SNP 
array data confirms this interpretation as human stromal DNA 
contributions can be removed from SNP arrays based on allele fre-
quencies of germline heterozygous sites, while such contributions 
to WES and WGS have higher uncertainties. We also performed 
intra-model comparisons using RNA-based approaches, which 
showed that the expression-based comparison of CNA profiles 
between PTs and PDXs can lead to overestimation of copy number 
changes during engraftment and passage (Supplementary Fig. 63 
and Supplementary Note 5).

Late PDX passages maintain CNA profiles similar to early pas-
sages. Systematic mouse environment-driven evolution, if present, 
should reduce copy number correlations at each subsequent pas-
sage. However, we observed no apparent effect during passaging 
on the SNP, WES or WGS platforms (Fig. 3d–f and Extended Data 
Fig. 5). For example, the SNP data showed no significant difference 
between passages (Fig. 3d and Extended Data Fig. 5a). For those 
models having very late passages, there was a small but statistically 
significant correlation decrease compared with models with earlier 
passages (P < 8.98 × 10−5; Extended Data Fig. 6b), indicating that 
some copy number changes can occur over long-term passaging 
(Supplementary Fig. 35). However, even at these late passages, the 
correlations with early passages remained high (median = 0.896). In 
any given comparison, only a small proportion of the genes were 
affected by copy number changes (median = 2.72%; range = 1.03–
11.9%). Genes that are deleted and subsequently gained in the 
later passages (top left quadrant of regression plots; Extended Data  
Fig. 6a) suggest selection of pre-existing minor clones as the key 
mechanism in these regions. For WES and WGS data, more vari-
ability in the correlations can be observed (Fig. 3e,f and Extended 
Data Fig. 5b,c), probably due to a few samples having more stromal 
contamination or low aberration levels (Supplementary Fig. 62b and 
Extended Data Fig. 4). However, the lack of downward trend over 
passaging was also apparent in these sets (Supplementary Note 6).

PDX copy number profiles trace lineages. Next, we compared the 
similarity of engrafted PDXs of the same model with the same pas-
sage number. Surprisingly, we discovered that these pairs were not 
more similar than pairs of PDXs from different passage numbers 
(Fig. 3d,e, Extended Data Fig. 5 and Supplementary Note 7). Such 
similarity in correlations suggested that copy number divergence 

Fig. 2 | Comparisons of resolution and accuracy for CNAs estimated using DNA- and expression-based methods. a, Pairwise comparisons of the 
distributions of CNA segment sizes as estimated using different measurement platforms in the validation dataset. CNAs are regions with (|log2[copy 
number ratio]| ≥ 0.1). P values indicate the significance of the difference between distributions by two-sided Wilcoxon rank-sum test. vs, versus. b, Pairwise 
comparisons of the distributions of CNA segment log2[copy number ratio] values. P values were computed by two-sided Kolmogorov–Smirnov test.  
c, Distributions of Pearson correlation coefficients of median-centered log2[copy number ratio] values in 100-kb windows from CNA segments between 
pairs of samples estimated using different platforms. Samples with non-aberrant profiles in SNP array and WES data were omitted (5–95% inter-percentile 
range of log2[copy number ratio] < 0.3). P values were computed by two-sided Wilcoxon rank-sum test. In the box plots, the center line represents the 
median, the box limits are the upper and lower quantiles, the whiskers extend to 1.5× the interquartile range and the dots represent outliers. d, Examples of 
CNA profiles in comparisons of different platforms. Pearson correlation coefficients of CNA segments between pairs of samples are shown on the right.  
See Supplementary Table 3 for the number of samples per group. Examples of CNA profiles in comparisons of different platforms are shown; each sample 
ID is denoted by the model ID, passage number and platform used (see Supplementary Data 1).
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might be associated with effects other than passaging. To further this 
analysis, we defined, for The Jackson Laboratory (JAX) SNP array 
and Patient-Derived Models Repository (PDMR) WES datasets,  

samples within a lineage as those differing only by consecutive 
serial passages, while we defined lineages as split when a tumor 
was divided and propagated into multiple mice (Fig. 3g). For the 
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EurOPDX colorectal cancer (CRC) and WGS breast cancer (BRCA) 
datasets, such lineage splitting was due only to cases with initial 
engraftment of different fragments of the PT (that is, PDX samples of 
different passages were considered as different lineages if they origi-
nated from different PT fragments). We observed lower correlation  

between PDX samples from different lineages compared with 
within a lineage (Fig. 3h; P = 0.0233 for SNP; P = 0.00119 for WES; 
P = 0.000232 for WGS), despite a majority of these pairwise com-
parisons exhibiting high correlation (>0.9) (Supplementary Notes 8  
and 9). This suggests that lineage splitting is often responsible  
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Fig. 3 | Comparisons of CNAs from PTs with early and late PDX passages. a–c, Distributions of Pearson correlation coefficients of gene-based copy 
number, estimated by SNP array (a), WES (b) and WGS (c) between: PT–PDX samples of the same model; PDX–PDX samples of the same model; and 
samples of different models from a common tumor type and contributing center. P values were computed by one-sided Wilcoxon rank-sum test (P > 0.05). 
Numbers of data points are indicated. NS, not significant. d–f, Distributions of Pearson correlation coefficients of gene-based copy number, estimated 
by SNP array (d), WES (e) and WGS (f) among PT and PDX passages of the same model. Comparisons relative to PT (top) and P0 (bottom) are shown 
(higher passages are shown in Extended Data Fig. 5). In the box plots, the center line represents the median, the box limits are the upper and lower 
quantiles, the whiskers extend to 1.5× the interquartile range and the dots represent all data points. g, Schematic of lineage splitting during passaging and 
expansion of tumors into multiple mice. This is a simplified illustration for passaging procedures in which different fragments of a tumor are implanted into 
different mice. h, Pearson correlation distributions for PDX sample pairs of different lineages and sample pairs within the same lineage, for (from left to 
right): JAX SNP array, PDMR WES and EuroPDX WGS datasets. P values were computed by one-sided Wilcoxon rank-sum test. For all box plots and violin 
plots, the numbers of pairwise correlations are indicated in the x axis labels.
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for deviations in CNAs between samples, and that copy number 
evolution during passaging mainly arises from evolved spatial 
heterogeneity24.

We further explored whether the stability of copy number during 
engraftment and passaging is affected by mutations in genes known 
to impact genome stability (see Methods). Overall, we observed that 
the presence of mutations in such genes does not lead to increased 
copy number changes during PDX engraftment and passaging 
(Supplementary Note 10 and Supplementary Fig. 66).

Genes with CNAs acquired during engraftment and passaging 
show no preference for cancer or treatment-related functions. 
Next, we investigated which genes tend to undergo copy number 
changes. Genes with changes during engraftment or during passag-
ing were identified based on a residual threshold with respect to the 
improved linear regression39 (see Methods and Extended Data Fig. 3). 
To test for functional biases, we compared CNA-altered genes with 
gene sets with known cancer- and treatment-related functions40–43 
(see Methods). We calculated the proportion of altered genes for 
sample pairs from each model across all platforms and tumor types. 
In agreement with the high maintenance of CNA profiles described 
above, we found the proportion of altered protein-coding genes to 
be low (median and IQR, respectively = 1.90 and 4.11% for PT–PDX 
pairs and 1.25 and 3.60% for PDX–PDX pairs; Fig. 4a). Only 8.78% 
of PT–PDX pairs and 4.53% of PDX–PDX pairs showed alteration 
of >10% of their protein-coding genes. We observed no significant 
increase (P > 0.1) in alterations among any of the cancer gene sets 
compared with the background of all protein-coding genes, for 
either the PT–PDX or PDX–PDX comparisons. This provides evi-
dence that there is no systematic selection for CNAs in oncogenic 
or treatment-related pathways during engraftment or passaging. 
Next, we considered tumor-type-specific effects, focusing on tumor 
types with larger numbers of models to ensure statistical power. We 
observed no significant increase in alterations in tumor-type-specific 
driver gene sets significantly altered in TCGA44–47 compared with 
the background (P > 0.1) for either PT–PDX or PDX–PDX com-
parisons (Fig. 4b and Supplementary Note 11).

Low recurrence of altered genes across models. We observed a very 
low recurrent frequency (Fig. 4c; see Methods), with only 12 and 
two genes recurring at >5% frequency for PT–PDX and PDX–
PDX comparisons, respectively (Supplementary Table 4). No gene 
had a recurrence frequency higher than 8.96% (Supplementary 
Note 12). None of these recurrent genes overlapped cancer- or 
treatment-related gene sets, nor did they intersect genes (n = 3) 
reported by Ben-David et al.23 to have mouse-induced copy num-
ber changes associated with drug response in the Cancer Cell Line 
Encyclopedia (CCLE)48,49 database (Supplementary Note 12).

Absence of CNA shifts in 130 WGS PT, early-passage PDX and 
late-passage PDX trios. Next, we investigated whether recurrent 
CNA changes occur in PDXs in a tumor-type-specific fashion. 
To this aim, we analyzed further the WGS-based CNA profiles of 

large metastatic CRC and BRCA series, composed of matched trios 
of PT, PDX at early passage (PDX-early) and PDX at later passage 
(PDX-late). Genomic Identification of Significant Targets in Cancer 
(GISTIC)50,51 analysis was applied separately to identify recurrent 
CNAs in each PT, PDX-early and PDX-late cohort of CRC and 
BRCA (see Methods and Supplementary Table 6). As expected, 
CRCs and BRCAs generated different patterns of significant CNAs 
but, within each tumor type, GISTIC profiles of the PT, PDX-early 
and PDX-late cohorts were virtually indistinguishable (Fig. 5a, 
Extended Data Fig. 7 and Supplementary Note 13), demonstrating 
no gross genomic alteration systematically acquired or lost in PDXs.

We then carried out gene-level analysis, where each gene was 
attributed the GISTIC score (G score) of the respective segment 
(Supplementary Table 7). In both the CRC and BRCA cohorts, 
gene-level G scores of the PTs were highly correlated with the 
respective PDX-early and PDX-late cohorts (Fig. 5b,c). Moreover, 
PT versus PDX correlations were comparable to PDX-early versus 
PDX-late correlations. To search for progressive shifts, we com-
pared the change in G score (ΔG): (1) from tumor to PDX-early; 
and (2) from PDX-early to PDX-late. Correlations in these two ΔG 
values were absent or even slightly negative (bottom-right panels 
of Fig. 5b,c and Supplementary Note 13). Overall, these results 
confirmed the absence of systematic CNA shifts in PDXs, even 
under high-resolution gene-level analysis. To evaluate the possi-
bility of systematic copy number evolution at the pathway level in 
these trios, we performed gene set enrichment analysis (GSEA)52,53 
using G scores to rank genes in each cohort (see Methods and 
Supplementary Note 14). For both CRC and BRCA, the normal-
ized enrichment score (NES) profiles for the ~8,000 gene sets of PTs 
were highly correlated with the respective PDX-early and PDX-late 
cohorts (Fig. 5d,e). Moreover, PT versus PDX correlations were 
comparable to PDX-early versus PDX-late correlations. To search for 
progressive shifts, we calculated for each significant gene set ΔNES 
values between PT and PDX-early, as well as between PDX-early 
and PDX-late. Similar to what was observed for ΔG, correlations 
were absent or at most slightly negative (bottom-right panels of  
Fig. 5d,e), confirming the absence of systematic CNA-based func-
tional shifts in PDXs.

CNA evolution across PDXs is no greater than variation in patient 
multiregion samples. As a reference for the treatment relevance of 
PDX-specific evolution, we compared this with the levels of copy 
number variation in multiregion samples of PTs. For this, we used 
copy number data from multiregion sampling of non-small-cell 
lung cancer from the TRACERx Consortium54, performing analo-
gous CNA correlation and gene analyses between multiregion pairs 
(Supplementary Fig. 69). We observed no significant differences in 
correlation (P > 0.05) between patient multiregion and lung cancer 
PT–PDX pairs, while PDX–PDX pairs in fact showed significantly 
better correlation than the multiregion pairs (P < 0.05; Fig. 6a), 
consistent across all lung cancer subtypes. Cancer gene set analyses 
confirmed these results, with multiregion samples showing greater 
differences than either PT–PDX or PDX–PDX comparisons, across 

Fig. 4 | Cancer gene set analysis for copy number–altered genes during engraftment and passaging. a, Distribution of the proportion of altered genes 
between pairwise PT–PDX (left) and PDX–PDX comparisons (right) of the same model in various gene sets. Along the x axes from left to right are: 
protein-coding genes annotated by Ensembl; genes in oncogenic signaling pathways identified by TCGA; genes with copy number gain or overexpression 
(Amp) and genes with copy number loss or underexpression (Del) associated with therapeutic sensitivity or resistance or changes in drug response identified 
by JAX CKB; and genes from the Cancer Gene Census frequently altered by amplifications or deletions. CNA genes were identified by |residual| > 0.5 from 
a linear regression model. b, Distribution of the proportion of altered genes between pairwise PT–PDX (top) PDX–PDX comparisons (bottom) of the same 
model in various gene sets within BRCA, CRC, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) models. Along the x axes from left to 
right are: protein-coding genes annotated by Ensembl, followed by significantly amplified and deleted genes from TCGA GISTIC analysis for the corresponding 
tumor type. For all violin plots, P values were computed by one-sided Wilcoxon rank-sum test (P > 0.1). The numbers of pairwise comparisons are indicated 
above each plot, whereas the numbers of genes per gene set are indicated in the x axis labels. c, Recurrence frequencies of protein-coding genes with CNAs, 
|residual| > 1, across all models in PT–PDX (left) and PDX–PDX comparisons (right). Number of models are indicated in the x axis labels.
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all cancer gene sets considered (P < 0.05; Fig. 6b and Extended Data 
Fig. 8). These results show that PDX-associated CNA evolution is no 
greater than what patients experience naturally within their tumors. 

Our PDX collection also contains a few cases in which the PT was 
assayed at multiple time points (relapse/metastasis) or multiple 
metastatic sites, allowing for controlled comparison of intra-patient 
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variation versus PDX evolution (Supplementary Figs. 3, 4 and 7). 
Despite a lower median in correlations among intra-patient sam-
ples, the difference compared with CNA evolution during engraft-
ment (PT–PDX) was not statistically significant (P > 0.05; Fig. 6c). 
CNA profiles for these samples are shown visually in Fig. 6d.

Discussion
Here, we have investigated the evolutionary stability of PDXs—an 
important model system for which there have been previous reports 
of mouse-induced copy number evolution. To better address this, 
we assembled a collection of CNA profiles of PDX models, com-
prising PDX models with multiple passages and their originating 
PTs. Our analysis showed the reliability of copy number estima-
tion by DNA-based measurements over RNA-based inferences, 
which are substantially inferior in terms of resolution and accuracy 
(Supplementary Note 15). The importance of DNA measurements 
is supported by the inconsistent conclusions by two independent 
studies (Ben-David et al.23,55 and Mer et al.56) on the same PDX 
expression array dataset by Gao et al.15. Ben-David et al. concluded 
that drastic copy number changes, driven by mouse-specific selec-
tion, often occur within a few passages. In contrast, Mer et al. 
reported high similarity between passages of the same PDX model 
based on direct correlations of gene expression, consistent with our 
findings in large, independent DNA-based datasets.

The copy number shifts inferred by Ben-David et al. were inher-
ently impacted by major technical issues. First, the microarray sig-
nal for PT samples is diluted by introgressed human stromal cells, 
while in PDXs mouse stromal transcripts only hybridize to a frac-
tion of the human probes57. Consequently, PT samples with sub-
stantial stromal content would display a reduced signal compared 
with the corresponding PDX, which can lead to an erroneous infer-
ence of systematic increase in aberrations during PDX engraftment 
when gain/loss regions are directly compared. Second, the mouse 
host microenvironment can affect the transcriptional profile of the 
PDX tumor58 and the quantity of mouse stroma can vary across pas-
sages. This can result in variability in the expression signal, which 
can be wrongly inferred as copy number changes, both from the 
tumor itself and through cross-hybridization of mouse RNA to the 
human microarray. Although improved concordance in expres-
sion between PT and PDX can be achieved with RNA-seq with the 
removal of mouse reads59,60, we observed that expression-based 
copy number inferences still have low resolution and robustness. 
Hence, many cancer-driving genes, which are found mainly in 
focal events with a size of 3 Mb or lower61–64, cannot be evaluated 
for PDX-specific alterations. These issues are further worsened 
by the lack of tissue-matched normal gene expression profiles for 
calibration37, which have been only intermittently available but 

can substantially impact copy number inferences. Because of these 
considerations, the question of how much PDXs evolve as a conse-
quence of mouse-specific selective pressures cannot be adequately 
addressed by expression data.

The studies we have presented here take into account the above 
issues by the use of DNA data, as well as by assessing copy num-
ber changes by pairwise correlation/residual analysis to control for 
systematic biases, and they overall confirm the high retention of 
CNA profiles from PDX engraftment to passaging. We did observe 
larger deviations between PT–PDX than in PDX–PDX compari-
sons, although this was probably due to dilution of the PT signal 
by human stromal cells. Interestingly, we found that a major con-
tributor to the differences between PDX samples is lineage-specific 
drift associated with the splitting of tumors into fragments during 
PDX propagation. This spatial evolution within tumors appears to 
affect sample comparisons more than time or the number of pas-
sages. This suggests that PDX expansion and passaging is the bottle-
neck of copy number evolution in PDXs, reflecting stochasticity in 
sampling within spatially heterogeneous tumors (Supplementary  
Note 16).

A challenge for evaluating any model system is that there is no 
clear threshold for genomic change that determines whether the 
model will still reflect patient response. Genetic variation among 
multiregion samples within a patient can shed light on this point54,65–68  
since the goal of a successful treatment would be to eradicate all of 
the multiple regions of the tumor. We found that the copy number 
differences between PT and PDX are no greater than the variations 
among multiregion tumor samples or intra-patient samples. Thus, 
concerns about the genetic stability of the PDX system are likely 
to be less important than the spatial heterogeneity of solid tumors 
themselves. This result is consistent with our results on lineage 
effects during passaging, which indicate that intratumoral spatial 
evolution is the major reason for genetic drift.

We observed no evidence for systematic mouse environment- 
induced selection for cancer- or treatment-related genes via copy 
number changes, although individual cases vary (see example in 
Extended Data Fig. 6c). Moreover, only a small fraction of sample 
pairs (2.44%; 43 out of 1,758) showed large CNA discordance (see 
Methods), suggesting that clonal selection out of a complex popula-
tion is rare. These results indicate that the variations observed in 
PDXs are mainly due to spontaneous intratumoral evolution, rather 
than murine pressures (Supplementary Note 17).

In summary, our in-depth tracking of CNAs throughout PDX 
engraftment and passaging confirms that tumors engrafted and pas-
saged in PDX models maintain a high degree of molecular fidelity to 
the original PTs, thus verifying their suitability for preclinical drug 
testing. At the same time, our study does not rule out that PDXs 

Fig. 6 | Comparison of CNA variation during PDX engraftment and passaging with CNA variation among patient multiregion, tumor relapse and 
metastasis samples. a, Distributions of Pearson correlation coefficients of gene-based copy number for lung adenocarcinoma (LUAD), lung squamous cell 
carcinoma (LUSC) and other lung cancer subtypes, comparing different datasets. From left to right on the x axis, these include: multiregion tumor samples 
of the same patient from TRACERx (n = 92 PTs; n = 295 multiregion samples); PT–PDX samples of the same model; and PDX–PDX samples of the same 
model. P values were computed by two-sided Wilcoxon rank-sum test (P > 0.05). b, Distributions of the proportion of altered genes between multiregion 
tumor pairs from TRACERx, as well as PT–PDX and PDX–PDX pairs, for various gene sets for LUAD and LUSC. The gene sets and CNA thresholds are 
the same as in Fig. 4. TCGA GISTIC Amp/Del and JAX CKB Amp Del gene sets are shown (other gene sets are shown in Extended Data Fig. 8). P values 
were computed by one-sided Wilcoxon rank-sum test. The numbers of genes per gene set are indicated above each plot. c, Distributions of Pearson 
correlation coefficients of gene-based copy number between intra-patient PT pairs (n = 14; primary, relapse or metastasis) from the same patient (n = 5) 
and corresponding PT–PDX pairs (derived from the same model; a different PT sample from the same patient generates a different model) for the same set 
of patients. P values were computed by two-sided Wilcoxon rank-sum test (P > 0.05). For all box and violin plots, the numbers of pairwise comparisons are 
indicated in the x axis labels. In all box plots the center line represents the median, the box limits are the upper and lower quantiles, the whiskers extend 
to 1.5× the interquartile range and the dots represent all data points. d, CNA profiles of PT and PDX samples from patients with PDX models derived 
from multiple PT collections (primary, relapse and metastasis). Each sample ID is denoted by the model ID, passage number and platform used (see 
Supplementary Data 1).

NATuRE GENETICS | VOL 53 | JANUARY 2021 | 86–99 | www.nature.com/naturegenetics96

http://www.nature.com/naturegenetics


ArticlesNATurE GENETICs

will evolve in individual trajectories over time; thus, for therapeu-
tic dosing studies, the best practice is to confirm the existence of 
expected molecular targets and obtain sequence characterizations 
in the cohorts used for testing as close to the time of the treatment 
study as is practical.
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Methods
Experimental details for sample collection, PDX engraftment and passaging, 
and array or sequencing. For details of sample collection, abbreviations of PDX 
model sources, PDX engraftment and passaging, and array/sequencing, see the 
Supplementary Methods.

Consolidating tumor types from different datasets. As the terminology of tumor 
types/subtypes by the different contributing centers was not consistent, we used 
the Disease Ontology database69 (http://disease-ontology.org/), along with cancer 
types listed on the NCI website (https://www.cancer.gov/types) and in TCGA 
publications70,71, to unify and group the tumor types/subtypes under broader terms, 
as shown in Fig. 1 and Supplementary Table 2.

CNA estimation methods. SNP array. The estimation of CNA profiles from SNP 
array was detailed previously34. In short, for Affymetrix Human SNP 6.0 arrays, 
PennCNV-Affy and Affymetrix Power Tools72 were used to extract the B-allele 
frequency and log[R ratio] from the CEL files. Due to the absence of paired normal 
samples, the allele-specific signal intensity for each PDX tumor was normalized 
relative to 300 randomly selected sex-matched Affymetrix Human SNP 6.0 array 
CEL files obtained from the International HapMap Project73. For Illumina Infinium 
Omni2.5Exome-8 SNP arrays (version 1.3 and version 1.4 kits), the Illumina 
GenomeStudio software was used to extract the B-allele frequency and log[R ratio] 
from the signal intensity of each probe. The single sample mode of the Illumina 
GenomeStudio was used, which normalizes the signal intensities of the probes with 
an Illumina in-house dataset. The single tumor version of ASCAT33 (version 2.4.3 
for JAX SNP data and version 2.5.1 for SIBS SNP data) was used for GC correction, 
predictions of the heterozygous germline SNPs based on the SNP array platform, 
and estimation of ploidy, tumor content and allele-specific copy number segments. 
The resultant copy number segments were annotated with the log2[ratio of the total 
copy number relative to the predicted ploidy from ASCAT].

WES data. Aligned BAMs (see Supplementary Methods) were subset to the target 
region by GATK 4.0.5.1, and SAMTools74 version 0.1.18 was used to generate the 
pileup for each sample. Pileup data were used for CNA estimation, as calculated 
with Sequenza29 version 2.1.2. Both tumor and normal data, which utilized the 
same capture array, were used as input. pileup2seqz and GC-windows (-w 50) 
modules from sequenza-utils.py utility were used to create the native seqz format 
file for Sequenza and to compute the average GC content in sliding windows 
from the hg38 genome, respectively. We ran the three Sequenza modules with 
these modified parameters (sequenza.extract: assembly = ‘hg38’, sequenza.fit: 
chromosome.list = 1:23 and sequenza.results: chromosome.list = 1:23) to estimate 
the segments of copy number gains/losses. Finally, segments lacking read counts, 
in which ≥50% of the segment had zero read coverage, were removed. A reference 
implementation of this workflow (Supplementary Fig. 71) was developed and 
deployed in the Cancer Genomics Cloud by Seven Bridges (https://cgc.sbgenomics.
com/public/apps#pdxnet/pdx-wf-commit2/wes-cnv-tumor-normal-workflow/ 
and https://cgc.sbgenomics.com/public/apps#pdxnet/pdx-wf-commit2/
pdx-wes-cnv-xenome-tumor-normal-workflow/).

Low-pass WGS data. For EuroPDX CRC liver metastasis data, raw copy number 
profiles for each sample were estimated using the QDNAseq75 R package (version 
1.20) by dividing the human reference genome into non-overlapping 50-kb 
windows and counting the number of reads (see Supplementary Methods) in each 
bin. Bins in problematic regions were removed76. Read counts were corrected 
for GC content and mappability using a LOESS regression, median normalized 
and log2 transformed. Values below –1,000 in each chromosome were floored 
to the first value greater than –1,000 in the same chromosome. Raw log2[ratio] 
values were then segmented using the ASCAT33 algorithm implemented in the 
ASCAT R package (version 2.0.7). For EuroPDX BRCA tumors, raw copy number 
profiles were estimated for each sample by dividing the human reference genome 
into non-overlapping 20-kb windows and counting the number of reads (see 
Supplementary Methods) in each bin. Only reads with a mapping quality of at least 
37 were considered. Bins within problematic regions (that is, multimapper regions) 
were excluded. Downstream analysis to estimate copy number was conducted as 
described above.

RNA-seq and gene expression microarray data. For expression-based copy 
number inference, we referred to the previous protocols for e-karyotyping and 
CGH-Explorer37,38,77,78. For each cancer type, expression values (see Supplementary 
Methods) of tumor samples and corresponding normal samples were merged in 
a single table, and gene identifiers were annotated with chromosomal nucleotide 
positions. Genes located on sex chromosomes were excluded. Genes with values 
below one transcript per million (TPM) (RNA-seq) or probeset log2 values below 6 
(microarray) in more than 20% of the analyzed dataset were removed. Remaining 
gene expression values below the thresholds were respectively raised to 1 TPM 
or a log2 value of 6. In the case of multiple transcripts (RNA-seq) or probesets 
(microarray) per gene, the one with the highest median value across the entire 
dataset was selected. According to the e-karyotyping protocol, the sum of squares 
of the expression values relative to their median expression across all samples was 

calculated for each gene, and 10% of the most highly variable genes were removed. 
For each gene, the median log2[expression] value in normal samples was subtracted 
from the log2[expression] value in each tumor sample and subsequently input into 
CGH-Explorer. For tumor-only datasets, the median log2[expression] value in the 
same set of tumor samples was instead subtracted. The preprocessed expression 
profiles of each sample were individually analyzed using CGH-Explorer (http://
heim.ifi.uio.no/bioinf/Projects/CGHExplorer/). Piecewise constant fit analysis was 
carried out to call copy number according to parameters previously reported23: 
least allowed deviation = 0.25; least allowed aberration size = 30; winsorize at 
quantile = 0.001; penalty = 12; and threshold = 0.01.

Statistical methods. All statistical analyses for data comparison were performed 
using either a one- or two-tailed Wilcoxon rank-sum test, a two-tailed 
Kolmogorov–Smirnov test or a one-tailed Wilcoxon signed-rank test.

Filtering and gene annotation of copy number segments. Copy number 
segments with a log2[copy number ratio] estimated from the various platforms 
were processed in the following steps (Extended Data Fig. 3). Segments <1 kb 
were filtered based on the definition of CNA79. In addition, SNP array segments 
had to be covered by more than ten probes, with an average probe density of one 
probe per 5 kb. The copy number segments were then binned into 10-kb windows 
to derive the median log2[copy number ratio], which was subsequently used to 
re-center the copy number segments. Median-centered copy number segments 
were visualized using IGV80 version 2.4.13 and GenVisR81 version 1.16.1. The 
median-centered copy number of genes was calculated by intersecting the genome 
coordinates of copy number segments with the genome coordinates of genes 
(Ensembl Genes 93 for human genome assembly GRCh38 and Ensembl Genes 
96 for human genome assembly GRCh37). In the case where a gene overlapped 
multiple segments, the most conservative (lowest) estimate of copy number was 
used to represent the copy number of the entire intact gene.

Comparison of copy number gains and losses. For the comparison of resolution, 
the range of copy number values and the frequency of gains and losses between 
different platforms and analysis methods, we defined copy number gain or loss 
segments as log2[copy number ratio] > 0.1 (for gain) and log2[copy number 
ratio] < −0.1 (for loss).

Correlation of CNA profiles. The overall workflow to compare CNA profiles is 
shown in Extended Data Fig. 3. PDX samples without passage information were 
omitted in the following downstream analysis. The copy number segments were 
binned into 100-kb windows or smaller using BEDTools82 version 2.26.0, and 
the variance of the log2[copy number ratio] and 5–95% inter-percentile range 
of the log2[copy number ratio] values across all of the bins were calculated as a 
measure of the degree of aberration for each CNA profile. A non-aberrant profile 
results in a low variance or range. While variance can be biased for CNA profiles 
with small segments of extreme gains or losses, we preferred use of the 5–95% 
inter-percentile range of log2[copy number ratio] to identify samples with a low 
degree of aberration, such that a narrow range indicates that ≥90% of the genome 
has very low-level gains and losses. The similarity of two CNA profiles is quantified 
by the Pearson correlation coefficient of the log2[copy number ratio] of 100-kb 
windows binned from segments or genes between two samples. Gene-based 
and segment-based (100-kb-window) correlations were highly similar (data not 
shown). Using correlation avoided the issue of making copy number gain and loss 
calls based on thresholds. Sample-based variations in the baseline due to median 
normalization and the range in copy number values could introduce further 
inconsistencies in gain and loss calls between samples. Such variations are further 
impacted by sample-specific variation in human stromal contamination or the 
sensitivity of copy number detection by different platforms. As median centering of 
each CNA profile approximates normalization by the sample ploidy, we confirmed 
that, in general, ploidy (estimated from ASCAT analysis of SNP array samples) had 
no association with the copy number correlation values (Pearson’s product moment 
correlation = 0.0248; P > 0.05). However, one caveat of our approach is that it 
cannot distinguish genome-wide multiplication of ploidy between samples, as the 
correlation statistic is invariant to such genome-wide transformations. As such, we 
cannot assess whether ploidy changes occur between samples of a given model.

Comparison of CNA profiles between different platforms. The copy number 
segments of each pair of data were intersected and binned into 100-kb windows 
or smaller using BEDTools. The Pearson correlation coefficient and linear 
regression model were calculated for the log2[copy number ratio] of the windows. 
Windows with discrepant copy numbers were identified by outliers of the linear 
regression model defined by |studentized residual| > 3. These outlier windows 
were mapped to their corresponding segments to identify the size of CNA events 
that were discordant between the different copy number estimation methods. The 
proportion of the genome-discordant CNA was calculated from the summation of 
the outlier windows.

Identification of genes with CNA between different samples of the same model. To 
compare the CNA profiles between different samples (PT or PDX) of the same 
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model, the Pearson correlation coefficient and linear regression model were 
calculated for the log2[copy number ratio] of the genes for each pair of data. Before 
that, deleted genes with a log2[copy number ratio] of <−3 were rescaled to −3 to 
avoid large shifts in the correlation coefficient and linear regression model due to 
extremely negative values on the log scale. Extreme outliers of the linear regression 
model defined by |studentized residual| > 3 were removed to derive an improved 
linear regression model39 not biased by a few extreme values. Genes with copy 
number changes between the samples were identified by the difference in log2[copy 
number ratio] relative to the improved linear regression model of |standard 
residual| < 0.5. We also removed some samples with low correlation due to sample 
mislabeling as they displayed high correlation with samples from other models. 
We also omitted samples with low correlation values (<0.6), which resulted from 
non-aberrant CNA profiles in genomically stable tumors (5–95% inter-percentile 
range of log2[copy number ratio] < 0.3; Supplementary Fig. 62).

Identification of aberrant sample pairs with highly discordant CNA profiles. 
Aberrant CNA profiles were identified based on the 5–95% inter-percentile range 
of log2[copy number ratio] > 0.5, for both samples. Sample pairs with a Pearson 
correlation of < 0.6 were selected as having highly discordant CNA profiles 
between them.

Association of mutations with copy number correlations. Mutational calls for 
each WES sample used in this study were obtained using a tumor normal 
variant calling workflow developed for PTs and PDXs35. Subsequently, genes 
with either germline or somatic variants that passed through the quality filters 
(FILTER = PASS or germline) and IMPACT = MODERATE or HIGH by SnpEff 
(version 4.3) annotation were labeled as mutated. Otherwise, they were labeled as 
wild type. For SNP array and WGS data, we collected the mutational status (wild 
type or mutated) of TP53, BRCA1 and BRCA2 per model where available, which 
may or may not have been obtained from the exact same tumor samples used in 
this study. For the JAX SNP array dataset, variant calls (tumor only) were made 
from various targeted sequencing approaches (TruSeq Amplicon Cancel Panel, 
JAX Cancer Treatment Profile panel and WES). The workflow and filtering 
criteria to call mutations is described elsewhere34. For the HCI SNP array  
data, mutations were obtained from WES (unpublished data) and were filtered 
for frameshift, inframe, missense, nonsense and splice-site mutations.  
For the BCM SNP array data, mutational status was obtained from clinical 
samples by immunohistochemistry or Sequenom83 (unpublished data). For the 
WGS data, mutations were obtained from WES or targeted panel sequencing84 
(unpublished data), and high-quality and probable functional mutations were 
retained. For each sample pair with copy number correlations, the mutational 
status of TP53 or BRCA was obtained for each individual sample for the WES 
data, while the mutational status was available on a per-model basis for the SNP 
and WGS data. BRCA was labeled as mutated when either BRCA1 or BRCA2 
was mutated. For mutations in DNA repair genes85 from the WES data, each pair 
of samples was classified as mutated if any DNA repair gene was reported to be 
mutated in either sample.

Annotation with gene sets with known cancer- or treatment-related functions. 
A low copy number change threshold (|log2[copy number ratio] change| > 0.5) 
was selected to include genes with subclonal alterations. Copy number–altered 
genes (|residual| > 0.5) were annotated by various gene sets with cancer- or 
treatment-related functions gathered from various databases and publications 
(Extended Data Fig. 3):

 (1) Genes in ten oncogenic signaling pathways curated by TCGA that were found 
to be frequently altered in different cancer types40;

 (2) Genes with a gain in copy number or expression or a loss in copy number or 
expression that conferred therapeutic sensitivity, resistance or an increase/
decrease in drug response from the JAX Clinical Knowledgebase (CKB)41,42 
(based on literature curation (https://ckbhome.jax.org/; as of 18 June 2019).

 (3) Genes with evidence of promoting oncogenic transformation by amplification 
or deletion from the Cancer Gene Census43 (COSMIC version 89); and

 (4) Significantly amplified or deleted genes in TCGA cohorts of BRCA44, CRC45, 
lung adenocarcinoma46 and lung squamous cell carcinoma47 by GISTIC 
analysis, which identified significantly altered genomic driver regions that can 
be used to differentiate between tumor types and subtypes.

Identification of genes with recurrent copy number changes. A stringent 
CNA threshold (|log2[copy number ratio] change| > 1.0 with respect to the linear 
regression model) was selected to distinguish genes with a possible functional 
impact. Genes with |residual| > 1.0 with respect to the improved regression linear 
model (without discriminating gain or loss) were selected for each pairwise 
comparison between different samples of the same model. Pairwise cases in which 
genes were deleted in both samples (log2[copy number ratio] ≤ −3) were omitted. 
The recurrent frequency for each gene across all models was calculated on a model 
basis such that genes with a copy number between multiple pairs of the same 
model were counted once. This avoided bias towards models with many samples of 
similar copy number changes between the different pairs.

Drug response analysis using CCLE data. We developed a pipeline to evaluate 
gene copy number effects on drug sensitivity86,87 by using CCLE48,88 cell line 
genomic and drug response data (Cancer Therapeutics Response Portal version 
2). We downloaded the CCLE drug response data from the Cancer Therapeutics 
Response Portal (www.broadinstitute.org/ctrp) and CCLE gene-level CNA and 
gene expression data from the DepMap data portal (public_19Q1_gene_cn.csv 
and CCLE_depMap_19Q1_TPM.csv; https://depmap.org/portal/download/). For 
CCLE drug response data, we used the area-under-the-concentration-response 
curve (AUC) sensitivity scores for each cancer cell line and each drug. In total, 
we collected gene-level log2[copy number ratio] data derived from the Affymetrix 
SNP 6.0 platform from 668 pan-cancer CCLE cell lines, with a total of 545 cancer 
drugs tested. With the CCLE gene-level CNA and AUC drug sensitivity scores, 
we performed gene–drug response association analyses for genes with recurrent 
copy number changes. Pearson correlation P values between each gene’s log2[copy 
number ratio] and each drug’s AUC score across all cell lines were calculated, and 
q values were calculated by multiple-testing Bonferroni correction. Significant 
gene CNA–drug associations were kept (q value < 0.1) to further evaluate gene 
expression and drug response associations. If a gene’s expression was also 
significantly correlated with AUC drug sensitivity scores, particularly in the 
same direction (either positively or negatively correlated) as the gene CNA–drug 
association, that gene would be considered as significantly correlated with drug 
response based on both its CNA and gene expression.

GISTIC analysis of WGS data. We carried out GISTIC analysis to identify 
recurrent CNAs by evaluating the frequency and amplitude of observed events. 
To obtain perfectly matching and comparable PT–PDX cohorts for GISTIC 
analysis, CRC trios in which at least one sample displayed non-aberrant CNA 
profiles were excluded from the analysis, resulting in a total of 87 triplets. The 
GISTIC51 algorithm (GISTIC 2.0 version 6.15.28) was applied on the segmented 
profiles using the GISTIC GenePattern module (https://cloud.genepattern.
org/), with default parameters and the genome reference files Human_Hg19.
mat for the EuroPDX CRC data and hg38.UCSC.add_miR.160920.refgene.
mat for the EuroPDX BRCA data. For each dataset, GISTIC provides separate 
results (including segments, G scores and false discovery rate q values) separately 
for recurrent amplifications and recurrent deletions. Deletion G scores were 
assigned negative values for visualization. We observed that the G score range was 
systematically lower in PT cohorts, which was probably the result of the dilution of 
CNA by normal stromal DNA. In contrast, human stromal DNA in PDX samples 
was lower or negligible. To account for this difference in gene-level G scores, PDXs 
at early and late passages were scaled with respect to PT gene-level G score values 
using global linear regression, separately for amplification and deletion outputs.

GSEA of WGS data. To assess the biological functions associated with 
the recurrent alterations detected by the GISTIC analysis, we performed 
GSEAPreranked analysis52,53 (GSEA version 3.0) on gene-level G score profiles for 
both amplifications and deletions. In particular, we applied the algorithm with 
1,000 permutations on various gene set collections from the Molecular Signatures 
Database89,90 (MSigDB version 6.2): (1) hallmark; (2) curated (chemical and 
genetic perturbations and canonical pathways); (3) Gene Ontology (biological 
processes, molecular functions and cellular components); and (4) oncogenic 
signatures. These collections were composed of 50, 4,762, 5,917 and 189 gene sets, 
respectively. We also included gene sets with known cancer- or treatment-related 
functions, as described above. We noted that multiple genes with contiguous 
chromosomal locations—typically in recurrent amplicons—generated spurious 
enrichment for gene sets consisting of multiple genes of adjacent positions, while 
very few or none of them had a significant G score. To avoid this confounding 
issue, we only considered the leading-edge genes (that is, those genes with an 
increasing NES up to its maximum value that contribute to the GSEA significance 
for a given gene set). The leading-edge subset can be interpreted as the core that 
accounts for the gene set’s enrichment signal (http://software.broadinstitute.org/
gsea). We included a requirement that the leading-edge genes passing the G score 
significance thresholds based on a GISTIC q value of 0.25 (Supplementary Table 
8 and Extended Data Fig. 7) make up at least 20% of the gene set. This 20% 
threshold was chosen as the minimum threshold at which gene sets assembled 
from TCGA-generated lists of genes with recurrent CNAs in CRC or BRCA were 
identified as significant in GSEA (see Supplementary Table 9). Finally, gene sets 
with a NES of >1.5 and a false discovery rate q value of <0.05 that passed the 
leading-edge criteria were considered significantly enriched in genes affected by 
recurrent CNAs.

Ethics. All of the xenograft studies were completed in accordance with animal 
research ethics regulations. For details, see the Supplementary Methods.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Copy number calls from all datasets are available in Supplementary Data 1, and 
these were used for all of the figures. Raw sequence data for these calls are a 
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combination of previously described sources (notably, the publicly available NCI 
Patient-Derived Models Repository; pdmr.cancer.gov) and newly sequenced 
data. New sequence data from PDXNet are being shared as part of the NCI 
Cancer Moonshot initiative through the Cancer Data Service. For further details, 
contact the corresponding authors. The SNP array data generated by The Jackson 
Laboratory can be requested via the Mouse Models of Human Cancer Database 
(tumor.informatics.jax.org). The WGS data generated by EurOPDX can be made 
available by directly contacting the EurOPDX Consortium (dataportal.europdx.eu 
or e-mail to E. Medico). Other publicly available data used in the analyses include 
those deposited to the Gene Expression Omnibus (GSE90653, GSE3526 and 
GSE33006) and ArrayExpress (E-MTAB-1503-3), as well as CCLE cell line genomic 
and drug response data (Cancer Therapeutics Response Portal version 2), and 
MSigDB version 6.2 and TRACERx non-small cell lung cancer data (https://doi.
org/10.1056/NEJMoa1616288).

Code availability
We have used well-established computational sequence analysis and statistical 
analysis techniques, so no code is provided. Full descriptions of all of the analysis 
techniques are provided in the Methods. The implementation of the copy number 
estimation workflow from WES data is deployed in the cancer genomics cloud at 
SevenBridges (https://cgc.sbgenomics.com/public/apps#pdxnet/pdx-wf-commit2/
wes-cnv-tumor-normal-workflow/ and https://cgc.sbgenomics.com/public/
apps#pdxnet/pdx-wf-commit2/pdx-wes-cnv-xenome-tumor-normal-workflow/).
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Extended Data Fig. 1 | Comparison of segment sizes between different platforms. The left panel compares the combined corresponding segment sizes of 
outlier and non-outliers from the linear regression of the log2(CN ratio) of 100-kb windows binned from copy number segments between matched samples 
estimated from two different platforms or methods combined. Outliers of the linear regression are identified by studentized residuals > 3 and < -3. a, SNP 
vs. WES. b, WES vs. RNASEQ (NORM). c, WES vs. RNASEQ (TUM). d, SNP vs. EXPARR (NORM). e, SNP vs. EXPARR (TUM) (see Supplementary Table 3). 
The right panel compares the distribution of the segment sizes of outliers and non-outliers for the platform or method of higher resolution.
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Extended Data Fig. 2 | Comparison of copy number between different platforms. Pearson correlation and linear regression of the log2(CN ratio) of 100-kb 
windows binned from copy number segments of CNA profiles between matched patient tumor samples estimated from different platforms or analysis 
methods for examples shown in Fig. 2d. Outliers of the linear regression are identified by studentized residuals > 3 and < -3. RNA-seq and expression 
array samples denoted with ‘PN’ or ‘NORM’ are normalized by the median expression of normal samples.
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Extended Data Fig. 3 | Analysis workflow to compare CNA between two samples of the same PDX model. A correlation and robust regression approach 
to quantify similarity of CNA profiles and identify genes with copy number changes between two samples.
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Extended Data Fig. 4 | Correlations between PT-PDX and PDX-PDX pairs. a, The 5-95% inter-percentile range of CNA profiles between PT-PDX or 
PDX-PDX sample pairs from the same model on different platforms as shown in Fig. 3a–c. The 5-95% inter-percentile range of log2(CN ratio) values were 
calculated across all 100-kb windows per sample. P-values were computed by one-sided Wilcoxon rank sum test (ns: non-significant, P > 0.05). In the 
boxplots, the center line is the median, box limits are the upper and lower quantiles, whiskers extend 1.5× the interquartile range, and dots represent the 
outliers. b, Pearson correlation of the samples versus the ratio of 5-95% inter-percentile range between two samples (PT/PDX or PDX-1/PDX-2). Samples 
pairs with ratio of range much greater or less than 1 (that is one sample is much less aberrant than the other) tend to have lower correlations. PDX-1, lower 
passage PDX; PDX-2, later passage PDX or same passage PDX of different lineage.
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Extended Data Fig. 5 | Distribution of Pearson correlation coefficients of gene-based copy number. a-c, Estimated by SNP array (a), WES (b), and WGS 
(c) between different combinations of patient tumor and PDX passages of the same model. Comparisons relative to passages P1 or later passages (refer 
to Fig. 3d–f for comparisons with PT and P0). In the boxplots, the center line is the median, box limits are the upper and lower quantiles, whiskers extend 
1.5× the interquartile range, and dots represent all data points.

NATuRE GENETICS | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNATurE GENETICs

Extended Data Fig. 6 | Comparison of CNA between early and very-late passages. In the BCM SNP array breast cancer dataset. a, Correlation and 
robust regression of gene-based copy number between early (P0-P2) and very-late passages (P18-P21) of the same model. Genes with copy number 
changes between the passages are identified by |residual| > 0.5. Some genes show signs of complete deletion (log2(CN ratio) < -2) but then reappear in 
later passages. This can only be explained by the early and late passages being dominated by different pre-existing subclones. b, Distribution of Pearson 
correlation coefficients of gene-based copy number between early and very-late passages of the same model (14 models/pairwise correlations) compared 
to correlation coefficients between lower passages denoted as ‘other passages’ (< P4). Correlation for ‘other passages’ are based on models from all other 
non-BCM SNP array datasets (111 pairwise correlations). P-values were computed by one-sided Wilcoxon rank sum test. In all boxplots, the center line is 
the median, box limits are the upper and lower quantiles, whiskers extend 1.5× the interquartile range, and dots represent outliers. c, Summary of passage 
numbers, copy number correlation, and fraction of genes of different gene sets with copy number changes (|residual| > 0.5) between passages of each 
breast cancer model.
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Extended Data Fig. 7 | GISTIC analysis of recurrent CNAs. a,b, GISTIC plots showing amplified and deleted regions in the EurOPDX WGS of trios of PTs 
and derived PDXs, at early and late passages, of colorectal cancer (a, 87 trios) and breast cancer (b, 43 trios). For each GISTIC plot, the top axis reports 
the G-score and the bottom axis the q-value.
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Extended Data Fig. 8 | Distribution of proportion of altered genes for lung cancer samples. Comparison between multi-region tumor pairs from 
TRACERx, and PT-PDX and PDX-PDX pairs for various gene sets for LUAD and LUSC. Gene sets and CNA thresholds are the same as Fig. 4, other gene 
sets are shown in Fig. 6b. P-values were computed by one-sided Wilcoxon rank sum test. Numbers of genes per gene set are indicated in the plot title, and 
number of pairwise comparisons are indicated in the horizontal axis labels.
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Copy number calls from all datasets are available in Supplementary Data 1, and these are used for all figures. Raw sequence data for these calls are a combination of 
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genome sequencing data generated by EurOPDX can be made available by directly contacting the EurOPDX consortium (dataportal.europdx.eu). Other publicly 
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