195 research outputs found

    Dual Functions of ASCIZ in the DNA Base Damage Response and Pulmonary Organogenesis

    Get PDF
    Zn2+-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion or knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis

    Collectivity of neutron-rich Ti isotopes

    Full text link
    The structure of the neutron-rich nucleus 58Ti was investigated via proton inelastic scattering in inverse kinematics at a mean energy of 42.0 MeV/nucleon. By measuring the deexcitation Ξ³ rays, three transitions with the energies of 1046(11) keV, 1376(18) keV, and 1835(27) keV were identified. The angle-integrated cross section for the 1046-keV excitation, which corresponds to the decay from the first 2+ state, was determined to be 13(7) mb. The deformation length Ξ΄p,pβ€² was extracted from the cross section to be 0.83βˆ’0.30+0.22 fm. The energy of the first 2+ state and the Ξ΄p,pβ€² value are comparable to the ones of 56Ti, which indicates that the collectivity of the Ti isotopes does not increase significantly with neutron number until N=36. This fact indicates that 58Ti is outside of the region of the deformation known in the neutron-rich nuclei around N=40

    A novel regulatory circuit in base excision repair involving AP endonuclease 1, Creb1 and DNA polymerase Ξ²

    Get PDF
    DNA repair is required to maintain genome stability in stem cells and early embryos. At critical junctures, oxidative damage to DNA requires the base excision repair (BER) pathway. Since early zebrafish embryos lack the major polymerase in BER, DNA polymerase ß, repair proceeds via replicative polymerases, even though there is ample polb mRNA. Here, we report that Polb protein fails to appear at the appropriate time in development when AP endonuclease 1 (Apex), the upstream protein in BER, is knocked down. Because polb contains a Creb1 binding site, we examined whether knockdown of Apex affects creb1. Apex knockdown results in loss of Creb1 and Creb complex members but not Creb1 phosphorylation. This effect is independent of p53. Although both apex and creb1 mRNA rescue Creb1 and Polb after Apex knockdown, Apex is not a co-activator of creb1 transcription. This observation has broad significance, as similar results occur when Apex is inhibited in B cells from apex+/βˆ’ mice. These results describe a novel regulatory circuit involving Apex, Creb1 and Polb and provide a mechanism for lethality of Apex loss in higher eukaryotes

    Gastrointestinal Hyperplasia with Altered Expression of DNA Polymerase Ξ²

    Get PDF
    Background: Altered expression of DNA polymerase Ξ² (Pol Ξ²) has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol Ξ² over-expression has not yet been evaluated in a mouse model. Methodology/Principal Findings: We have recently developed a novel transgenic mouse model that over-expresses Pol Ξ². These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of Brunner's gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol Ξ² over-expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol Ξ² expression. We observed elevated expression of Pol Ξ² in stomach adenomas and thyroid follicular carcinomas, but reduced Pol Ξ² expression in esophageal adenocarcinomas and squamous carcinomas. Conclusions/Significance: These data support the hypothesis that balanced and proficient base excision repair protein expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor formation

    Reduced Food Intake and Body Weight in Mice Deficient for the G Protein-Coupled Receptor GPR82

    Get PDF
    G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments
    • …
    corecore