1,006 research outputs found

    Discovery of X-ray pulsations from IGR J16320-4751 = AX J1631.9-4752

    Full text link
    We report a discovery of strong modulations of the X-ray flux detected from IGR J16320-4751 = AX J1631.9-4752 with a period of P~1300 sec. We reanalyzed the data of an XMM-Newton ToO performed soon after the discovery of the source by INTEGRAL and found the modulation at a period of P=1309+/-40 sec with a high significance. Modulations of the source flux with two possible periods of ~1300 and ~1500 sec were identified in the ASCA archival data. It is very likely that the modulation can be interpreted as X-ray pulsations, favouring a pulsar as the compact object in IGR/AX J16320-4752. Thus for the moment this source became the fourth source from a new class of highly absorbed binary systems for which the pulsations are observed.Comment: accepted for the publication in A&A Letters, 4 pages, 4 figure

    Precision Timing of Two Anomalous X-Ray Pulsars

    Get PDF
    We report on long-term X-ray timing of two anomalous X-ray pulsars, 1RXS J170849.0-400910 and 1E 2259+586, using the Rossi X-ray Timing Explorer. In monthly observations made over 1.4 yr and 2.6 yr for the two pulsars, respectively, we have obtained phase-coherent timing solutions which imply that these objects have been rotating with great stability throughout the course of our observations. For 1RXS J170849.0-400910, we find a rotation frequency of 0.0909169331(5) Hz and frequency derivative -15.687(4) x 10^(-14) Hz/s, for epoch MJD 51215.931. For 1E 2259+586, we find a rotation frequency of 0.1432880613(2)Hz, and frequency derivative -1.0026(7) x 10^(-14) Hz/s, for epoch MJD 51195.583. RMS phase residuals from these simple models are only about 0.01 cycles for both sources. We show that the frequency derivative for 1E 2259+586 is inconsistent with that inferred from incoherent frequency observations made over the last 20 yr. Our observations are consistent with the magnetar hypothesis and make binary accretion scenarios appear unlikely.Comment: 12 pages including 3 figures. To appear in ApJ Letter

    Further evidence that 1RXS J170849.0-400910 is an Anomalous X-ray pulsar

    Get PDF
    We report the results of two ROSAT HRI observations of the recently discovered 11s X-ray pulsar 1RXS J170849.0-400910. A refined position with a smaller error radius (10" uncertainty) and a new spin period measurement were obtained. These results allowed to derive a period derivative of about 7 times 10^-4 s yr^-1 and to perform a photometric and spectroscopic study of the possible optical counterparts of the source. The limits derived from the optical to X-ray flux ratio exclude the presence of a massive OB companion. These findings, together with the nearly constant X-ray flux, the stability of the pulse shape and pulsed fraction across observations spanning three years, strongly support the inclusion of this 11s pulsar in the class of Anomalous X-ray Pulsars (AXPs).Comment: 4 pages plus 4 postscript figures. emulateapj style. Accepted for publication in Astrophysical Journal Letter

    Emission Spectra of Fallback Disks Around Young Neutron Stars

    Full text link
    The nature of the energy source powering anomalous X-ray pulsars is uncertain. Proposed scenarios involve either an ultramagnetized neutron star, or accretion onto a neutron star. We consider the accretion model proposed recently by Chatterjee, Hernquist & Narayan, in which a disk is fed by fallback material following a supernova. We compute the optical, infrared, and submillimeter emission expected from such a disk, including both viscous dissipation and reradiation of X-ray flux impinging on the disk from the pulsar. We find that it is possible with current instruments to put serious constraints on this and on other accretion models of AXPs. Fallback disks could also be found around isolated radio pulsars and we compute the corresponding spectra. We show that the excess emission in the R and I bands observed for the pulsar PSR 0656+14 is broadly consistent with emission from a disk.Comment: 12 pages, 1 table, 4 figures, submitted to Ap

    The dust-enshrouded microquasar candidate AX J1639.0-4642 = IGR J16393-4643

    Get PDF
    We present a multiwavelength study of the field containing the unidentified X-ray source AX J1639.0-4642, discovered with the ASCA observatory and recently detected with the IBIS telescope, onboard the INTEGRAL satellite, dubbed IGR J16393-4643. The huge hydrogen column density towards the source, the hard spectral index in the 0.7-10 keV band and its flux variability suggest that the source is a High Mass X-ray Binary (HMXB) enshrouded by dust. Our search reveals the presence of a non-thermal radio counterpart within the X-ray error box. After a study of the broadband emission from X-rays to the radio domain, we propose that AX J1639.0-4642 is a dust-enshrouded Microquasar (MQ) candidate. In addition, the X-ray source is well within the 95% location contour of the unidentified gamma-ray source 3EG J1639-4702. The main properties of AX J1639.0-4642/3EG J1639-4702 are consistent with those of two other MQs previously proposed to display high-energy gamma-ray emission.Comment: 7 pages, 5 figures. Accepted for publication in A&A. Title and discussion on the possible NIR counterpart have been modifie

    Photon Propagation Around Compact Objects and the Inferred Properties of Thermally Emitting Neutron Stars

    Get PDF
    Anomalous X-ray pulsars, compact non-pulsing X-ray sources in supernova remnants, and X-ray bursters are three distinct types of sources for which there are viable models that attribute their X-ray emission to thermal emission from the surface of a neutron star. Inferring the surface area of the emitting regions in such systems is crucial in assessing the viability of different models and in providing bounds on the radii of neutron stars. We show that the inferred areas of the emitting regions may be over- or under-estimated by a factor of <=2, because of the geometry of the system and general relativistic light deflection, combined with the effects of phase averaging. Such effects make the determination of neutron-star radii uncertain, especially when compared to the ~5% level required for constraining the equation of state of neutron-star matter. We also note that, for a given spectral shape, the inferred source luminosities and pulse fractions are anticorrelated because they depend on the same properties of the emitting regions, namely their sizes and orientations, i.e., brighter sources have on average weaker pulsation amplitudes than fainter sources. We argue that this property can be used as a diagnostic tool in distinguishing between different spectral models. As an example, we show that the high inferred pulse fraction and brightness of the pulsar RXS J1708-40 are inconsistent with isotropic thermal emission from a neutron-star surface. Finally, we discuss the implication of our results for surveys in the soft X-rays for young, cooling neutron stars in supernova remnants and show that the absence of detectable pulsations from the compact source at the center of Cas A (at a level of >=30%) is not a strong argument againts its identification with a spinning neutron star.Comment: 6 pages, 6 figures, to appear in the Astrophysical Journal; minor change

    A new search strategy for microquasar candidates using NVSS/2MASS and XMM-Newton data

    Full text link
    Microquasars are ideal natural laboratories for understanding accretion/ejection processes, studying the physics of relativistic jets, and testing gravitational phenomena. Nevertheless, these objects are difficult to find in our Galaxy. The main goal of this work is to increase the number of known systems of this kind. We have developed an improved search strategy based on positional cross-identification with very restrictive selection criteria to find new MQs, taking advantage of more sensitive modern radio and X-ray data. We find 86 sources with positional coincidence in the NVSS/XMM catalogs at |b|<10 deg. Among them, 24 are well-known objects and the remaining 62 sources are unidentified. For the fully coincident sources, whenever possible, we analyzed color-color and hardness ratio diagrams and found that at least 3 of them display high-mass X-ray binary characteristics, making them potential microquasar candidates.Comment: 9 pages, 3 figures, accepted for publication in A&

    General Relativistic Constraints on Emission Models of Anomalous X-ray Pulsars

    Get PDF
    Most models of anomalous X-ray pulsars (AXPs) account for the observed X-ray spectra and pulsations by means of radiation processes that occur on the surfaces of neutron stars. For any such model, general relativistic deflection of light severely suppresses the amplitude of the observed pulsations. We calculate the expected pulsation amplitudes of AXPs according to various models and compare the results with observations. We show that the high (<= 70%) pulse amplitudes observed in some AXPs can be accounted for only if the surface emission is localized (spot radius <40 degrees) and strongly beamed (cos^n[theta'] with n>2, where theta' is the angle to the normal). These constraints are incompatible with those cooling and magnetar models in which the observed X-rays originate as thermal emission from the neutron-star surface. Accretion models, on the other hand, are compatible with observations for a wide range of parameters. Finally, definitive conclusions cannot be reached on magnetospheric models, since their localization and beaming properties are not well understood.Comment: 7 pages, 9 figures, submitted to The Astrophysical Journa

    A Chandra Observation of Supernova Remnant G350.1-0.3 and Its Central Compact Object

    Full text link
    We present a new Chandra observation of supernova remnant (SNR) G350.1-0.3. The high resolution X-ray data reveal previously unresolved filamentary structures and allow us to perform detailed spectroscopy in the diffuse regions of this SNR. Spectral analysis demonstrates that the region of brightest emission is dominated by hot, metal-rich ejecta while the ambient material along the perimeter of the ejecta region and throughout the remnant's western half is mostly low-temperature, shocked interstellar/circumstellar medium (ISM/CSM) with solar-type composition. The data reveal that the emission extends far to the west of the ejecta region and imply a lower limit of 6.6 pc on the diameter of the source (at a distance of 4.5 kpc). We show that G350.1-0.3 is likely in the free expansion (ejecta-dominated) stage and calculate an age of 600-1200 years. The derived relationship between the shock velocity and the electron/proton temperature ratio is found to be entirely consistent with that of other SNRs. We perform spectral fits on the X-ray source XMMU J172054.5-372652, a candidate central compact object (CCO), and find that its spectral properties fall within the typical range of other CCOs. We also present archival 24 um data of G350.1-0.3 taken with the Spitzer Space Telescope during the MIPSGAL galactic survey and find that the infrared and X-ray morphologies are well-correlated. These results help to explain this remnant's peculiar asymmetries and shed new light on its dynamics and evolution

    X-ray observations of the high magnetic field radio pulsar PSR J1814-1744

    Get PDF
    PSR J1814-1744 is a 4 s radio pulsar with surface dipole magnetic field strength 5.5*10^13 G, inferred assuming simple magnetic dipole braking. This pulsar's spin parameters are very similar to those of anomalous X-ray pulsars (AXPs), suggesting that this may be a transition object between the radio pulsar and AXP population, if AXPs are isolated, high magnetic field neutron stars as has recently been hypothesized. We present archival X-ray observations of PSR J1814-1744 made with ROSAT and ASCA. X-ray emission is not detected from the position of the radio pulsar. The derived upper flux limit implies an X-ray luminosity significantly smaller than those of all known AXPs. This conclusion is insensitive to the possibility that X-ray emission from PSR J1814-1744 is beamed or that it undergoes modest variability. When interpreted in the context of the magnetar mechanism, these results argue that X-ray emission from AXPs must depend on more than merely the inferred surface magnetic field strength. This suggests distinct evolutionary paths for radio pulsars and AXP, despite their proximity in period--period derivative phase space.Comment: 11 pages, including 2 embedded figures. Accepted by Ap
    • …
    corecore