34 research outputs found

    Impact scenarios in boron carbide: A computational study

    Get PDF
    The effect of radiative impacts on the structure of boron carbide has been studied by both classical and ab initio simulations. As a part of this study, a new forcefield was developed for use in studying boron carbide materials. Impact scenarios in boron carbide were simulated in order to investigate the exceptional resistance of this material, and other icosahedral boron solids, to high-energy impact events. It was observed that interstitial defects created by radiative impacts are likely to be quenched locally, utilizing the high substitutional disorder of chains and cages in the boron carbide structure, rather than via impacted atoms recombining with their vacated lattice site

    Carboranes and their incorporation into siloxane polymers

    Get PDF
    This is a report detailing the computational investigation of copolymers containing carborane and siloxane monomers, to aid in the design an industrially relevant material for use in high neutron radiative environments. This includes determining the optimal carborane/siloxane ratio in the designed material with regards to macroscale physical properties; with experimentally determined values for pure siloxane phases reproduced, using classical methods. The investigation shows that increasing carborane content increases bulk modulus and decreases the thermal expansion coefficient, levelling off beyond 50% carborane content. It also includes the effect of including specific side groups to polymer strands in order to affect properties; for instance, it is seen that phenyl groups increase the flexibility of the polymer strands. Alongside this, the report includes the simulation of property “aging”; using classical crosslinking methods to model the effect of high energy ions travelling through the material following neutron capture events, and ab initio simulation of damage to the monomer. Unsurprisingly, crosslinking sees a reduction in flexibility, leading to an increase in bulk modulus and a decrease in the thermal expansion coefficient, whilst the changes in vibrational spectra as a result of neutron capture events are predicted: due to changes in bond strength and orbital structure, modes involved with cage elements move to a higher frequency, and B-H modes move to lower. Finally for the designed material, context is given by examining the current state of the art: solid boron carbide, and its remarkable resistance to radiation of several different forms, with experimental theories and mechanisms discussed. Carborane clusters are further examined in other technological areas: thermal rearrangements of single carboranes and metallo-carboranes, with the 40 to 145 kJ/mol (dependent on mechanism) difference between theoretical and experimental activation energies rationalised, and investigations of icosahedral boron cluster anions in lithium battery electrolytes, where a ≈17% improvement in lithium mobility is theorised

    Accurate and efficient representation of intra­molecular energy in ab initio generation of crystal structures. II. Smoothed intramolecular potentials

    Get PDF
    The application of Crystal Structure Prediction (CSP) to industrially-relevant molecules requires the handling of increasingly large and flexible compounds. We present a revised model for the effect of molecular flexibility on the lattice energy that removes the discontinuities and non-differentiabilities present in earlier models (Sugden et al., 2016), with a view to improving the performance of CSP. The approach is based on the concept of computing a weighted average of local models, and has been implemented within the CrystalPredictor code. Through the comparative investigation of several compounds studied in earlier literature, we show that this new model results in large reductions in computational effort (of up to 65%) and in significant increases in reliability. The approach is further applied to investigate, for the first time, the computational polymorphic landscape of flufenamic acid for Z’=1 structures, resulting in the successful identification of all three experimentally resolved polymorphs within reasonable computational time

    Regional models of the influence of human disturbance and habitat quality on the distribution of breeding territories of common ringed plover Charadrius hiaticula and Eurasian oystercatcher Haematopus ostralegus

    Get PDF
    We estimated the influence of human disturbance and environmental factors on territory establishment in common ringed plovers Charadrius hiaticula and Eurasian oystercatchers Haematopus ostralegus, to inform the conservation of these species. We examined a 212 km stretch of coastline in the United Kingdom in 2003, mapping all breeding pairs of both study species, as well as the environmental characteristics of beaches and locations of visitors on the beach, the latter measured by filming from a light aircraft. Of the 1,003 200m sections of beach surveyed, 183 contained ringed plover territories (267 breeding pairs) and 117 contained oystercatcher territories (226 breeding pairs). 38,634 human visitors to the beach were mapped from three flights. Population densities of both ringed plovers and oystercatchers were lower in locations with high visitor numbers, even when accounting for the influence of the environmental characteristics of the beach. The two bird species showed similar rates of territory establishment at very low visitor rates, but oystercatchers showed a stronger negative response when visitor rates reached higher levels. Binary logistic regression models were used to identify areas where the birds would benefit most from reductions in the number of visitors and we illustrate how this information could be used to inform management around sites otherwise favourable for territory establishment.We would like to thank Viola Kimmel and Emma Coombes for digitising visitors from the aerial videos, the Tyndall centre, University of East Anglia, for funding the project, and English Nature, the National Trust and Landguard Bird Observatory for supplying some of the bird data (as described in the methods section)

    Regional models of the influence of human disturbance and habitat quality on the distribution of breeding territories of common ringed plover Charadrius hiaticula and Eurasian oystercatcher Haematopus ostralegus

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. We estimated the influence of human disturbance and environmental factors on territory establishment in common ringed plovers Charadrius hiaticula and Eurasian oystercatchers Haematopus ostralegus, to inform the conservation of these species. We examined a 212 km stretch of coastline in the United Kingdom in 2003, mapping all breeding pairs of both study species, as well as the environmental characteristics of beaches and locations of visitors on the beach, the latter measured by filming from a light aircraft. Of the 1003,200 m sections of beach surveyed, 183 contained ringed plover territories (267 breeding pairs) and 117 contained oystercatcher territories (226 breeding pairs). 38,634 human visitors to the beach were mapped from three flights. Population densities of both ringed plovers and oystercatchers were lower in locations with high visitor numbers, even when accounting for the influence of the environmental characteristics of the beach. The two bird species showed similar rates of territory establishment at very low visitor rates, but oystercatchers showed a stronger negative response when visitor rates reached higher levels. Binary logistic regression models were used to identify areas where the birds would benefit most from reductions in the number of visitors and we illustrate how this information could be used to inform management around sites otherwise favourable for territory establishment.Tyndall Centre for Climate Research, University of East Angli

    The Warden Attitude: An investigation of the value of interaction with everyday wildlife

    Get PDF
    Using a discrete choice experiment, we elicit valuations of engagement with ‘everyday wildlife’ through feeding garden birds. We find that bird-feeding is primarily but not exclusively motivated by the direct consumption value of interaction with wildlife. The implicit valuations given to different species suggest that people prefer birds that have aesthetic appeal and that evoke human feelings of protectiveness. These findings suggest that people derive wellbeing by adopting a warden-like role towards ‘their’ wildlife. We test for external validity by conducting a hedonic analysis of sales of bird food. We discuss some policy implications of the existence of warden attitudes

    The MHV68 M2 Protein Drives IL-10 Dependent B Cell Proliferation and Differentiation

    Get PDF
    Murine gammaherpesvirus 68 (MHV68) establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV). EBV encodes an interleukin-10 (IL-10) homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1α. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10−/− B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25) and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells—perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis—identifying a strategy that appears to be conserved between at least EBV and MHV68

    Trait plasticity in species interactions: a driving force of community dynamics.

    Get PDF
    Evolutionary community ecology is an emerging field of study that includes evolutionary principles such as individual trait variation and plasticity of traits to provide a more mechanistic insight as to how species diversity is maintained and community processes are shaped across time and space. In this review we explore phenotypic plasticity in functional traits and its consequences at the community level. We argue that resource requirement and resource uptake are plastic traits that can alter fundamental and realised niches of species in the community if environmental conditions change. We conceptually add to niche models by including phenotypic plasticity in traits involved in resource allocation under stress. Two qualitative predictions that we derive are: (1) plasticity in resource requirement induced by availability of resources enlarges the fundamental niche of species and causes a reduction of vacant niches for other species and (2) plasticity in the proportional resource uptake results in expansion of the realized niche, causing a reduction in the possibility for coexistence with other species. We illustrate these predictions with data on the competitive impact of invasive species. Furthermore, we review the quickly increasing number of empirical studies on evolutionary community ecology and demonstrate the impact of phenotypic plasticity on community composition. Among others, we give examples that show that differences in the level of phenotypic plasticity can disrupt species interactions when environmental conditions change, due to effects on realized niches. Finally, we indicate several promising directions for future phenotypic plasticity research in a community context. We need an integrative, trait-based approach that has its roots in community and evolutionary ecology in order to face fast changing environmental conditions such as global warming and urbanization that pose ecological as well as evolutionary challenges. © Springer Science+Business Media B.V. 2010
    corecore