5 research outputs found

    A Comparative Study on the Optical Properties of Multilayer CdSe / CdTe Thin Film with Single Layer CdTe and CdSe Films

    Get PDF
    CdTe and CdSe single layer thin films and CdSe / CdTe multilayer (ML) thin film were prepared by using physical vapour deposition method. Optical properties of CdSe / CdTe multilayer thin film shows different behavior due to type II band structure alignment. Energy band gap value of CdSe / CdTe ML thin film is shifted to higher value than that of single layer CdTe film. This is due to decrease in crystallite size to dimension smaller than the Bohr exciton radius of CdTe (14 nm). Crystallite size of the multilayer sample was calculated with the predictions of the effective mass approximation model (i.e., Brus model). It is observed that the photoluminescence peak of CdSe / CdTe ML thin film is red shifted compared to the peaks corresponding to individual CdSe and CdTe thin films. This may be due to the presence of type II quantum dot formation in the CdSe / CdTe heterostructure multilayer thin film. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3193

    Quantum Confinement in Cadmium Selenide Multilayer Thin Films Using Physical Vapour Deposition Method

    Get PDF
    Nanocrystals of CdSe have been produced in SiOx matrix layer and in ZnSe heterostructure layer by thermal evaporation method. Structural studies were done by X-ray diffractometer. Quantum confinement effect of CdSe nanocrystals was analyzed from optical studies. Bulk CdSe has band-gap energy of 1.756 eV that can be shifted to larger values by reducing the crystal size to dimensions smaller than the Bohr radius of the exciton. Experimentally measured band-gap shifts with respect to the bulk value for quantum dot thin films are compared with the predictions of the effective mass approximation model (i.e., Brus model) and Quantum mechanical model. Sizes of the crystallites calculated from both models were coincident with each other. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2779

    Tailored TiO2 Nanorod Arrays for Dye Sensitized Solar Cell Applications

    No full text
    A TiO2 layer using titanium (IV) butoxide on fluorine doped tin oxide (FTO) substrate is used as a seed layer for the growth of 2D-TiO2 arrays (TRA). TRAs with length of ~1 to 2 µm were grown on seed layer (SL) by two step method. In the first step TiO2 SLs were deposited by sol-gel assisted spin coating method and the second step involved the typical hydrothermal technique to grow rutile TRAs. Most of the TRAs grown on FTO substrate without SL were randomly oriented and TRAs with 0.025M SL was oriented vertically from the substrate. Whereas TRAs grown on 0.05M SL showed hierarchical nanoflower clusters composed of a bunch of TRAs as petals blooming to all directions from the core. The XRD pattern showed all the three TRAs to be crystallized in a tetragonal rutile phase. Photo Luminescence spectra revealed that the TRAs on 0.05M SL have comparatively low intense blue emission band, predicting the suppressed electron-hole recombination rate. The power conversion efficiency of the dye sensitized solar cell (DSSC) with TRAs grown on 0.05M SL was recorded as 3%, which is 3 times greater than that without SL and 1.6 times greater than that with 0.025M SL in our observations
    corecore