2,047 research outputs found
Spin melting and refreezing driven by uniaxial compression on a dipolar hexagonal plate
We investigate freezing characteristics of a finite dipolar hexagonal plate
by the Monte Carlo simulation. The hexagonal plate is cut out from a piled
triangular lattice of three layers with FCC-like (ABCABC) stacking structure.
In the present study an annealing simulation is performed for the dipolar plate
uniaxially compressed in the direction of layer-piling. We find spin melting
and refreezing driven by the uniaxial compression. Each of the melting and
refreezing corresponds one-to-one with a change of the ground states induced by
compression. The freezing temperatures of the ground-state orders differ
significantly from each other, which gives rise to the spin melting and
refreezing of the present interest. We argue that these phenomena are
originated by a finite size effect combined with peculiar anisotropic nature of
the dipole-dipole interaction.Comment: Proceedings of the Highly Frustrated Magnetism (HFM2006) conference.
To appear in a special issue of J. Phys. Condens. Matte
Microscopic Model and Phase Diagrams of the Multiferroic Perovskite Manganites
Orthorhombically distorted perovskite manganites, RMnO3 with R being a
trivalent rare-earth ion, exhibit a variety of magnetic and electric phases
including multiferroic (i.e. concurrently magnetic and ferroelectric) phases
and fascinating magnetoelectric phenomena. We theoretically study the phase
diagram of RMnO3 by constructing a microscopic spin model, which includes not
only the superexchange interaction but also the single-ion anisotropy (SIA) and
the Dzyaloshinsky-Moriya interaction (DMI). Analysis of this model using the
Monte-Carlo method reproduces the experimental phase diagrams as functions of
the R-ion radius, which contain two different multiferroic states, i.e. the
ab-plane spin cycloid with ferroelectric polarization P//a and the bc-plane
spin cycloid with P//c. The orthorhombic lattice distortion or the
second-neighbor spin exchanges enhanced by this distortion exquisitely controls
the keen competition between these two phases through tuning the SIA and DMI
energies. This leads to a lattice-distortion-induced reorientation of P from a
to c in agreement with the experiments. We also discuss spin structures in the
A-type antiferromagnetic state, those in the cycloidal spin states, origin and
nature of the sinusoidal collinear spin state, and many other issues.Comment: 23 pages, 19 figures. Recalculated results after correcting errors in
the assignment of Dzyaloshinsky-Moriya vector
Theory of optically forbidden d-d transitions in strongly correlated crystals
A general multiband formulation of linear and non-linear optical response
functions for realistic models of correlated crystals is presented. Dipole
forbidden d-d optical transitions originate from the vertex functions, which we
consider assuming locality of irreducible four-leg vertex. The unified
formulation for second- and third-order response functions in terms of the
three-leg vertex is suitable for practical calculations in solids. We
illustrate the general approach by consideration of intraatomic spin-flip
contributions, with the energy of 2J, where J is a Hund exchange, in the
simplest two-orbital model.Comment: 9 pages, 4 figures, to appear in J. Phys. Cond. Matte
Coherent population trapping in ruby crystal at room temperature
Observation of coherent population trapping (CPT) at ground-state Zeeman
sublevels of -ion in ruby is reported. The experiments are performed
at room temperature by using both nanosecond optical pulses and nanosecond
trains of ultrashort pulses. In both cases sharp drops in the resonantly
induced fluorescence are detected as the external magnetic field is varied.
Theoretical analysis of CPT in a transient regime due to pulsed action of
optical pulses is presented.Comment: 4 pages, 4 figures, submitted to PR
Low-energy Mott-Hubbard excitations in LaMnO_3 probed by optical ellipsometry
We present a comprehensive ellipsometric study of an untwinned, nearly
stoichiometric LaMnO_3 crystal in the spectral range 1.2-6.0 eV at temperatures
20 K < T < 300 K. The complex dielectric response along the b and c axes of the
Pbnm orthorhombic unit cell, \epsilon^b(\nu) and \epsilon^c(\nu), is highly
anisotropic over the spectral range covered in the experiment. The difference
between \epsilon^b(\nu) and \epsilon^c(\nu) increases with decreasing
temperature, and the gradual evolution observed in the paramagnetic state is
strongly enhanced by the onset of A-type antiferromagnetic long-range order at
T_N = 139.6 K. In addition to the temperature changes in the lowest-energy gap
excitation at 2 eV, there are opposite changes observed at higher energy at 4 -
5 eV, appearing on a broad-band background due to the strongly dipole-allowed O
2p -- Mn 3d transition around the charge-transfer energy 4.7 eV. Based on the
observation of a pronounced spectral-weight transfer between low- and
high-energy features upon magnetic ordering, they are assigned to high-spin and
low-spin intersite d^4d^4 - d^3d^5 transitions by Mn electrons. The anisotropy
of the lowest-energy optical band and the spectral weight shifts induced by
antiferromagnetic spin correlations are quantitatively described by an
effective spin-orbital superexchange model. An analysis of the multiplet
structure of the intersite transitions by Mn e_g electrons allowed us to
estimate the effective intra-atomic Coulomb interaction, the Hund exchange
coupling, and the Jahn-Teller splitting energy between e_g orbitals in LaMnO_3.
This study identifies the lowest-energy optical transition at 2 eV as an
intersite d-d transition, whose energy is substantially reduced compared to
that obtained from the bare intra-atomic Coulomb interaction.Comment: 10 pages, 14 figure
Hubbard U and Hund's Exchange J in Transition Metal Oxides: Screening vs. Localization Trends from Constrained Random Phase Approximation
In this work, we address the question of calculating the local effective
Coulomb interaction matrix in materials with strong electronic Coulomb
interactions from first principles. To this purpose, we implement the
constrained random phase approximation (cRPA) into a density functional code
within the linearized augmented plane wave (LAPW) framework.
We apply our approach to the 3d and 4d early transition metal oxides SrMO3
(M=V, Cr, Mn) and (M=Nb, Mo, Tc) in their paramagnetic phases. For these
systems, we explicitly assess the differences between two physically motivated
low-energy Hamiltonians: The first is the three-orbital model comprising the
t2g states only, that is often used for early transition metal oxides. The
second choice is a model where both, metal d- and oxygen p-states are retained
in the construction of Wannier functions, but the Hubbard interactions are
applied to the d-states only ("d-dp Hamiltonian"). Interestingly, since -- for
a given compound -- both U and J depend on the choice of the model, so do their
trends within a family of these compounds. In the 3d perovskite series SrMO3
the effective Coulomb interactions in the t2g Hamiltonian decrease along the
series, due to the more efficient screening. The inverse -- generally expected
-- trend, increasing interactions with increasing atomic number, is however
recovered within the more localized "d-dp Hamiltonian". Similar conclusions are
established in the layered 4d perovskites series Sr2MO4 (M=Mo, Tc, Ru, Rh).
Compared to their isoelectronic and isostructural 3d analogues, the 4d 113
perovskite oxides SrMO3 (M=Nb, Mo, Tc) exhibit weaker screening effects.
Interestingly, this leads to an effectively larger U on 4d shells than on 3d
when a t2g model is constructed.Comment: 21 pages, 7 figure
Controlling orbital moment and spin orientation in CoO layers by strain
We have observed that CoO films grown on different substrates show dramatic
differences in their magnetic properties. Using polarization dependent x-ray
absorption spectroscopy at the Co L edges, we revealed that the
magnitude and orientation of the magnetic moments strongly depend on the strain
in the films induced by the substrate. We presented a quantitative model to
explain how strain together with the spin-orbit interaction determine the 3d
orbital occupation, the magnetic anisotropy, as well as the spin and orbital
contributions to the magnetic moments. Control over the sign and direction of
the strain may therefore open new opportunities for applications in the field
of exchange bias in multilayered magnetic films
- …