925 research outputs found

    Role of electron-electron and electron-phonon interaction effect in the optical conductivity of VO2

    Full text link
    We have investigated the charge dynamics of VO2 by optical reflectivity measurements. Optical conductivity clearly shows a metal-insulator transition. In the metallic phase, a broad Drude-like structure is observed. On the other hand, in the insulating phase, a broad peak structure around 1.3 eV is observed. It is found that this broad structure observed in the insulating phase shows a temperature dependence. We attribute this to the electron-phonon interaction as in the photoemission spectra.Comment: 6 pages, 8 figures, accepted for publication in Phys. Rev.

    Big-bang nucleosynthesis with a long-lived charged massive particle including 4^4He spallation processes

    Full text link
    We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.Comment: 12 pages, 4 figures, 1 table, references added, all figures correcte

    Quantum Melting of the Charge Density Wave State in 1T-TiSe2

    Get PDF
    We report a Raman scattering study of low-temperature, pressure-induced melting of the CDW phase of 1T-TiSe2. Our Raman scattering measurements reveal that the collapse of the CDW state occurs in three stages: (i) For P<5 kbar, the pressure dependence of the CDW amplitude mode energies and intensities are indicative of a ``crystalline'' CDW regime; (ii) for 5 < P < 25 kbar, there is a decrease in the CDW amplitude mode energies and intensities with increasing pressure that suggests a regime in which the CDW softens, and may decouple from the lattice; and (iii) for P>25 kbar, the absence of amplitude modes reveals a melted CDW regime.Comment: 5 pages, 4 figure

    Two-magnon Raman scattering in insulating cuprates: Modifications of the effective Raman operator

    Full text link
    Calculations of Raman scattering intensities in spin 1/2 square-lattice Heisenberg model, using the Fleury-Loudon-Elliott theory, have so far been unable to describe the broad line shape and asymmetry of the two magnon peak found experimentally in the cuprate materials. Even more notably, the polarization selection rules are violated with respect to the Fleury-Loudon-Elliott theory. There is comparable scattering in B1gB_{1g} and A1gA_{1g} geometries, whereas the theory would predict scattering in only B1gB_{1g} geometry. We review various suggestions for this discrepency and suggest that at least part of the problem can be addressed by modifying the effective Raman Hamiltonian, allowing for two-magnon states with arbitrary total momentum. Such an approach based on the Sawatzsky-Lorenzana theory of optical absorption assumes an important role of phonons as momentum sinks. It leaves the low energy physics of the Heisenberg model unchanged but substantially alters the Raman line-shape and selection rules, bringing the results closer to experiments.Comment: 7 pages, 6 figures, revtex. Contains some minor revisions from previous versio

    Raman Response of Magnetic Excitations in Cuprate Ladders and Planes

    Full text link
    An unified picture for the Raman response of magnetic excitations in cuprate spin-ladder compounds is obtained by comparing calculated two-triplon Raman line-shapes with those of the prototypical compounds SrCu2O3 (Sr123), Sr14Cu24O41 (Sr14), and La6Ca8Cu24O41 (La6Ca8). The theoretical model for the two-leg ladder contains Heisenberg exchange couplings J_parallel and J_perp plus an additional four-spin interaction J_cyc. Within this model Sr123 and Sr14 can be described by x:=J_parallel/J_perp=1.5, x_cyc:=J_cyc/J_perp=0.2, J_perp^Sr123=1130 cm^-1 and J_perp^Sr14=1080 cm^-1. The couplings found for La6Ca8 are x=1.2, x_cyc=0.2, and J_perp^La6Ca8=1130 cm^-1. The unexpected sharp two-triplon peak in the ladder materials compared to the undoped two-dimensional cuprates can be traced back to the anisotropy of the magnetic exchange in rung and leg direction. With the results obtained for the isotropic ladder we calculate the Raman line-shape of a two-dimensional square lattice using a toy model consisting of a vertical and a horizontal ladder. A direct comparison of these results with Raman experiments for the two-dimensional cuprates R2CuO4 (R=La,Nd), Sr2CuO2Cl2, and YBa2Cu3O(6+delta) yields a good agreement for the dominating two-triplon peak. We conclude that short range quantum fluctuations are dominating the magnetic Raman response in both, ladders and planes. We discuss possible scenarios responsible for the high-energy spectral weight of the Raman line-shape, i.e. phonons, the triple-resonance and multi-particle contributions.Comment: 10 pages, 6 figure

    Two-magnon Raman scattering in spin-ladder geometries and the ratio of rung and leg exchange constants

    Full text link
    We discuss ways in which the ratio of exchange constants along the rungs and legs of a spin-ladder material influences the two-magnon Raman scattering spectra and hence can be determined from it. We show that within the Fleury-Loudon-Elliott approach, the Raman line-shape does not change with polarization geometries. This lineshape is well known to be difficult to calculate accurately from theory. However, the Raman scattering intensities do vary with polarization geometries, which are easy to calculate. With some assumptions about the Raman scattering Hamiltonian, the latter can be used to estimate the ratio of exchange constants. We apply these results to Sugai's recent measurements of Raman scattering from spin-ladder materials such as La6_6Ca8_8Cu24_{24}O41_{41} and Sr14_{14}Cu24_{24}O41_{41}.Comment: 5 pages, revtex. Latest version focuses on ladder materials, with a detailed examination of the role of Heisenberg-like coupling constants which appear in the Fleury-Loudon-Elliott scattering operator but are rarely discussed in the literatur

    Vibrational states and disorder in continuously compressed model glasses

    Full text link
    We present in this paper a numerical study of the vibrational eigenvectors of a two-dimensional amorphous material, previously deeply studied from the point of view of mechanical properties and vibrational eigen-frequencies [7-10]. Attention is paid here to the connection between the mechanical properties of this material in term of elastic heterogeneities (EH), and how these inherent heterogeneous structures affect the vibrational eigenvectors and their plane waves decomposition. The systems are analysed for different hydrostatic pressures, and using results from previous studies, a deeper understanding of the boson peak scenario is obtained. The vibrational spectrum of a continuously densified silica glass is also studied, from which it appears that the pulsation associated with the boson peak follows the same pressure dependence trend than that of transverse waves with pulsation associated with the EH characteristic size.Comment: 9 pages, 12 figure
    • …
    corecore