2,984 research outputs found
Zero-temperature Phase Diagram of Two Dimensional Hubbard Model
We investigate the two-dimensional Hubbard model on the triangular lattice
with anisotropic hopping integrals at half filling. By means of a self-energy
functional approach, we discuss how stable the non-magnetic state is against
magnetically ordered states in the system. We present the zero-temperature
phase diagram, where the normal metallic state competes with magnetically
ordered states with and structures. It is shown
that a non-magnetic Mott insulating state is not realized as the ground state,
in the present framework, but as a meta-stable state near the magnetically
ordered phase with structure.Comment: 4 pages, 4 figure
\u3ci\u3eState v. Young\u3c/i\u3e and the New Test for Privacy in Washington
In State v. Young, the Washington Supreme Court determined that the warrantless use of an infrared thermal detection device on the home of a suspected marijuana grower was a violation of Article I, Section 7 of the Washington State Constitution. This Note argues that the court\u27s test for determining privacy rights under Article I, Section 7 is flawed in form and fails to achieve those goals set forth by the court. It suggests an alternative test for Article I, Section 7 privacy rights as well as a remedial prerequisite standard of proof in cases involving minimally intrusive surveillance techniques
Distributions of mixed layer properties in North Pacific water mass formation areas: comparison of Argo floats and World Ocean Atlas 2001
International audienceWinter mixed layer characteristics in the North Pacific Ocean are examined and compared between Argo floats in 2006 and the World Ocean Atlas 2001 (WOA01) climatology for a series of named water masses, North Pacific Tropical Water (NPTW), Eastern Subtropical Mode Water (ESTMW), North Pacific Subtropical Mode Water (NPSTMW), Light Central Mode Water (LCMW) and Dense Central Mode Water (DCMW). The WOA01 is found to be in good agreement with the Argo data in terms of water mass volumes, average temperature-salinity (T-S) properties, and outcrop areas. The exception to this conclusion is for the central mode waters, DCMW and LCMW, whose outcropping is shown to be much more intermittent than is apparent in the WOA01 and whose T-S properties vary from what is shown in the WOA01. Distributions of mixed layer T-S properties measured by floats are examined within the outcropping areas defined by the WOA01 and show some shifting of T-S characteristics within the confines of the named water masses. In 2006, all the water masses were warmer than climatology on average, with a magnitude of about 0.5°C. The NPTW, NPSTMW and LCMW were saltier than climatology and the ESTMW and DCMW fresher, with magnitudes of about 0.05. In order to put these results into context, differences between Argo and WOA01 were examined over the North Pacific between 20 and 45° N. A large-scsale warming and freshening is seen throughout this area, except for the western North Pacific, where results were more mixed
Robust surface electronic properties of topological insulators: Bi2Te3 films grown by molecular beam epitaxy
The surface electronic properties of the important topological insulator
Bi2Te3 are shown to be robust under an extended surface preparation procedure
which includes exposure to atmosphere and subsequent cleaning and
recrystallization by an optimized in-situ sputter-anneal procedure under ultra
high vacuum conditions. Clear Dirac-cone features are displayed in
high-resolution angle-resolved photoemission spectra from the resulting
samples, indicating remarkable insensitivity of the topological surface state
to cleaning-induced surface roughness.Comment: 3 pages, 3 figure
Cross-Sections for Electron Scattering Accompanied by Ionization of Inner-Shells
A method is presented to describe the electron scattering process at an ionization of inner-shell electrons. The differential cross-section with the energy transfer and the momentum transfer is calculated using the expression of the generalized oscillator strength. This cross-section and the total ionization cross-section are fairly close to the results obtained by the Gryzinski equation. The photo-absorption cross-section obtained by the present treatment shows good agreement with the experimental data in a wide range of the photon energy. Based on the present treatment, the scattering angle distribution of the primary electron is calculated
Monte Carlo Simulation of Secondary Electrons in Solids and its Application for Scanning Electron Microscopy
A new Monte Carlo calculation model is introduced to simulate not only the primary electron behavior but also the secondary electron cascade in a specimen bombarded with an electron beam. Either the primary or the generated electron in a specimen having energy greater than 0.1 keV is defined as a fast electron and the single scattering model is used in the simulation which employs the Mott elastic scattering cross section and the Rao Sahib-Wittry energy loss equation. The electron having energy smaller than 0.1 keV is defined as a slow electron and the cascade model is used which takes into account the classical binary collision with the conduction electrons. The performance of this simulation is verified in comparison with experiments for energy and angular distributions of slow secondary electrons (\u3c50eV). Then, this simulation is applied in a discussion of the quantitative signal variation of the secondary and the backscattered electrons depending on a specimen surface topography. The maximum intensity of the secondary electron signal is obtained where the scanning electron beam reaches around 1nm beside the top edge of a surface step made of Cu with the vertical side wall of 500nm in height
A Simulation of Secondary Electron Trajectories in Solids
A Monte Carlo calculation model is introduced to simulate not only the primary electron behavior but also the secondary electron cascade in a specimen bombarded with an electron beam. Electrons having energy greater than 0.1keV are treated as fast electrons and the single scattering Monte Carlo model is adopted. Electrons having energy smaller than 0.1keV are treated as slow electrons and the electron cascade Monte Carlo model is used. The calculated results for the energy distribution of secondary electrons, and primary electron energy dependence of the total secondary yield and the backscattering yield are in good agreement with experimental results
- …