31 research outputs found

    Purely excitonic lasing in ZnO microcrystals: Temperature-induced transition between exciton-exciton and exciton-electron scattering

    Get PDF
    Since the seminal observation of room-temperature laser emission from ZnO thin films and nanowires, numerous attempts have been carried out for detailed understanding of the lasing mechanism in ZnO. In spite of the extensive efforts performed over the last decades, the origin of optical gain at room temperature is still a matter of considerable discussion. In this work, we show that a ZnO film consisting of well-packed micrometer-sized ZnO crystals exhibits purely excitonic lasing at room temperature without showing any symptoms of electron-hole plasma emission, even under optical excitation more than 25 times above the excitonic lasing threshold. The lasing mechanism is shifted from the exciton-exciton scattering to the exciton-electron scattering with increasing temperature from 3 to 150 K. The exciton-electron scattering process continues to exist with further increasing temperature from 150 to 300 K. Thus, we present distinct experimental evidence that the room-temperature excitonic lasing is achieved not by exciton-exciton scattering, as has been generally believed, but by exciton-electron scattering. We also argue that the long carrier diffusion length and the low optical loss nature of the micrometer-sized ZnO crystals, as compared to those of ZnO nanostructures, plays a key role in showing room-temperature excitonic lasing

    Formation of x-ray Newton’s rings from nano-scale spallation shells of metals in laser ablation

    Get PDF
    The initial stages of the femtosecond (fs) laser ablation process of gold, platinum, and tungsten were observed by single-shot soft x-ray imaging technique. The formation and evolution of soft x-ray Newton’s rings (NRs) were found for the first time. The soft x-ray NRs are caused by the interference between the bulk ablated surface and nanometer-scale thin spallation layer; they originate from the metal surface at pump energy fluence of around 1 J/cm2 and work as a flying soft x-ray beam splitter

    Mechanism of enhanced optical second-harmonic generation in the conducting pyrochlore-type Pb2_{2}Ir2_{2}O7x_{7-x} oxide compound

    Full text link
    The structural, electronic, and optical properties of pyrochlore-type Pb2_{2}Ir2_{2}O6_{6}O'0.55_{0.55}, which is a metal without spatial inversion symmetry at room temperature, were investigated. Structural analysis revealed that the structural distortion relevant to the breakdown of the inversion symmetry is dominated by the Pb-O' network but is very small in the Ir-O network. At the same time, gigantic second-harmonic generation signals were observed, which can only occur if the local environment of the Ir 5dd electrons features broken inversion symmetry. First-principles electronic structure calculations reveal that the underlying mechanism for this phenomenon is the induction of the noncentrosymmetricity in the Ir 5dd bands by the strong hybridization with O' 2pp orbitals. Our results stimulate theoretical study of inversion-broken iridates, where exotic quantum states such as a topological insulator and Dirac semimetal are anticipated

    Spin canting in nonlinear terahertz magnon dynamics revealed by magnetorefractive probing in orthoferrite

    Get PDF
    We excite the spin precession in rare-earth orthoferrite YFeO3 by the magnetic field of intense terahertz pulse and probe its dynamics by transient absorption change in the near infrared. The observed waveforms contain quasi-ferromagnetic-mode magnon oscillation and its second harmonics with a comparably strong amplitude. The result can be explained by dielectric function derived from magnetorefractive Hamiltonian. We reveal that the strong second harmonic signal microscopically originates from novel dynamics of the quasi-ferromagnetic mode magnon at nonlinear regime, wherein spin canting angle periodically oscillates.Comment: Main text: 11 pages including abstract, 4 figures and reference list. Supplemental Material: 11 pages including 4 figures and reference lis
    corecore