22 research outputs found
Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo
Deep vein thrombosis (DVT) is a major cause of cardiovascular death. The sequence of events that promote DVT remains obscure, largely as a result of the lack of an appropriate rodent model. We describe a novel mouse model of DVT which reproduces a frequent trigger and resembles the time course, histological features, and clinical presentation of DVT in humans. We demonstrate by intravital two-photon and epifluorescence microscopy that blood monocytes and neutrophils crawling along and adhering to the venous endothelium provide the initiating stimulus for DVT development. Using conditional mutants and bone marrow chimeras, we show that intravascular activation of the extrinsic pathway of coagulation via tissue factor (TF) derived from myeloid leukocytes causes the extensive intraluminal fibrin formation characteristic of DVT. We demonstrate that thrombus-resident neutrophils are indispensable for subsequent DVT propagation by binding factor XII (FXII) and by supporting its activation through the release of neutrophil extracellular traps (NETs). Correspondingly, neutropenia, genetic ablation of FXII, or disintegration of NETs each confers protection against DVT amplification. Platelets associate with innate immune cells via glycoprotein Ibα and contribute to DVT progression by promoting leukocyte recruitment and stimulating neutrophil-dependent coagulation. Hence, we identified a cross talk between monocytes, neutrophils, and platelets responsible for the initiation and amplification of DVT and for inducing its unique clinical features
Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction
OBJECTIVE
To investigate whether immune cell composition and content of neutrophil extracellular traps (NETs) in relation to clinical outcome are different between acute ischemic stroke (AIS) and acute myocardial infarction (AMI), we performed histologic analysis and correlated results with clinical and procedural parameters.
METHODS
We retrieved thrombi from patients with AIS (n = 71) and AMI (n = 72) during endovascular arterial recanalization and analyzed their immune cell composition and NET content by immunohistology. We then associated thrombus composition with procedural parameters and outcome in AIS and with cardiac function in patients with AMI. Furthermore, we compared AIS thrombi with AMI thrombi and differentiated Trial of Org 10172 in Acute Stroke Treatment classifications to address potential differences in thrombus pathogenesis.
RESULTS
Amounts of leukocytes (p = 0.133) and neutrophils (p = 0.56) were similar between AIS and AMI thrombi. Monocytes (p = 0.0052), eosinophils (p < 0.0001), B cells (p < 0.0001), and T cells (p < 0.0001) were more abundant in stroke compared with AMI thrombi. NETs were present in 100% of patients with AIS and 20.8% of patients with AMI. Their abundance in thrombi was associated with poor outcome scores in patients with AIS and with reduced ejection fraction in patients with AMI.
CONCLUSION
In our detailed histologic analysis of arterial thrombi, thrombus composition and especially abundance of leukocyte subsets differed between patients with AIS and AMI. The presence and amount of NETs were associated with patients' outcome after AIS and AMI, supporting a critical impact of NETs on thrombus stability in both conditions
Sphingosine 1-Phosphate Produced by Sphingosine Kinase 2 Intrinsically Controls Platelet Aggregation In Vitro and In Vivo
RATIONALE
Platelets are known to play a crucial role in hemostasis. Sphingosine kinases (Sphk) 1 and 2 catalyze the conversion of sphingosine to the bioactive metabolite sphingosine 1-phosphate (S1P). Although platelets are able to secrete S1P on activation, little is known about a potential intrinsic effect of S1P on platelet function.
OBJECTIVE
To investigate the role of Sphk1- and Sphk2-derived S1P in the regulation of platelet function.
METHODS AND RESULTS
We found a 100-fold reduction in intracellular S1P levels in platelets derived from Sphk2(-/-) mutants compared with Sphk1(-/-) or wild-type mice, as analyzed by mass spectrometry. Sphk2(-/-) platelets also failed to secrete S1P on stimulation. Blood from Sphk2-deficient mice showed decreased aggregation after protease-activated receptor 4-peptide and adenosine diphosphate stimulation in vitro, as assessed by whole blood impedance aggregometry. We revealed that S1P controls platelet aggregation via the sphingosine 1-phosphate receptor 1 through modulation of protease-activated receptor 4-peptide and adenosine diphosphate-induced platelet activation. Finally, we show by intravital microscopy that defective platelet aggregation in Sphk2-deficient mice translates into reduced arterial thrombus stability in vivo.
CONCLUSIONS
We demonstrate that Sphk2 is the major Sphk isoform responsible for the generation of S1P in platelets and plays a pivotal intrinsic role in the control of platelet activation. Correspondingly, Sphk2-deficient mice are protected from arterial thrombosis after vascular injury, but have normal bleeding times. Targeting this pathway could therefore present a new therapeutic strategy to prevent thrombosis
Distinct Pathogenesis of Pancreatic Cancer Microvesicle-Associated Venous Thrombosis Identifies New Antithrombotic Targets In Vivo
Objective Cancer patients are at high risk of developing deep venous thrombosis (DVT) and venous thromboembolism, a leading cause of mortality in this population. However, it is largely unclear how malignant tumors drive the prothrombotic cascade culminating in DVT. Approach and Results Here, we addressed the pathophysiology of malignant DVT compared with nonmalignant DVT and focused on the role of tumor microvesicles as potential targets to prevent cancer-associated DVT. We show that microvesicles released by pancreatic adenocarcinoma cells (pancreatic tumor-derived microvesicles [pcMV]) boost thrombus formation in a model of flow restriction of the mouse vena cava. This depends on the synergistic activation of coagulation by pcMV and host tissue factor. Unlike nonmalignant DVT, which is initiated and propagated by innate immune cells, thrombosis triggered by pcMV was largely independent of myeloid leukocytes or platelets. Instead, we identified externalization of the phospholipid phosphatidylethanolamine as a major mechanism controlling the prothrombotic activity of pcMV. Disrupting phosphatidylethanolamine-dependent activation of factor X suppressed pcMV-induced DVT without causing changes in hemostasis. Conclusions Together, we show here that the pathophysiology of pcMV-associated experimental DVT differs markedly from innate immune cell-promoted nonmalignant DVT and is therefore amenable to distinct antithrombotic strategies. Targeting phosphatidylethanolamine on tumor microvesicles could be a new strategy for prevention of cancer-associated DVT without causing bleeding complications
Histological comparison of arterial thrombi in mice and men and the influence of Cl-amidine on thrombus formation
<div><p>Aims</p><p>Medical treatment of arterial thrombosis is mainly directed against platelets and coagulation factors, and can lead to bleeding complications. Novel antithrombotic therapies targeting immune cells and neutrophil extracellular traps (NETs) are currently being investigated in animals. We addressed whether immune cell composition of arterial thrombi induced in mouse models of thrombosis resemble those of human patients with acute myocardial infarction (AMI).</p><p>Methods and results</p><p>In a prospective cohort study of patients suffering from AMI, 81 human arterial thrombi were harvested during percutaneous coronary intervention and subjected to detailed histological analysis. In mice, arterial thrombi were induced using two distinct experimental models, ferric chloride (FeCl<sub>3</sub>) and wire injury of the carotid artery. We found that murine arterial thrombi induced by FeCl<sub>3</sub> were highly concordant with human coronary thrombi regarding their immune cell composition, with neutrophils being the most abundant cell type, as well as the presence of NETs and coagulation factors. Pharmacological treatment of mice with the protein arginine deiminase (PAD)-inhibitor Cl-amidine abrogated NET formation, reduced arterial thrombosis and limited injury in a model of myocardial infarction.</p><p>Conclusions</p><p>Neutrophils are a hallmark of arterial thrombi in patients suffering from acute myocardial infarction and in mouse models of arterial thrombosis. Inhibition of PAD could represent an interesting strategy for the treatment of arterial thrombosis to reduce neutrophil-associated tissue damage and improve functional outcome.</p></div
Migrating platelets are mechano scavengers that collect and bundle bacteria
Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection. In addition to their role in thrombosis and hemostasis, platelets can also migrate to sites of infection to help trap bacteria and clear the vascular surface
Accumulation of fibrinogen/fibrin in human and mouse arterial thrombi.
<p>(A) Representative immunohistochemical staining of mouse and human thrombi for fibrinogen/fibrin (red) and control stainings. Nuclei were counterstained with Hoechst (including controls). Bars: 50μm (top left and right), 200μm (bottom left and right), 300μm (top and bottom middle). (B) Fibrinogen/fibrin-covered area in the thrombus (human thrombi n = 6, mouse thrombi n = 3). Data are shown as mean ± SD.</p
Cl-amidine inhibits arterial thrombosis in mice.
<p>(A) Representative intravital microscopy images 5, 10 and 20min after FeCl<sub>3</sub> injury in mice treated with Cl-amidine or vehicle. Platelets were labeled in vivo (green). Bars, 200ÎĽm. (B) Time until occlusion (left) and duration of vessel occlusion (right) after FeCl<sub>3</sub> exposure in mice treated with vehicle (n = 8) or Cl-amidine (n = 8). (C) Left: Representative histological images (Ly6G in red, cit H3 in green, DAPI in blue) of NETs in mice treated with vehicle or Cl-amidine (n = 5/group). Bars, 5ÎĽm. Arrowhead, NET fiber. Middle: Quantification of NETs per 100 neutrophils (n = 5/group). Right: Quantification of leukocytes (left axis) and neutrophils (right axis) in murine arterial thrombi.</p