9 research outputs found

    Transmembrane Protease TMPRSS11B Promotes Lung Cancer Growth by Enhancing Lactate Export and Glycolytic Metabolism

    No full text
    Summary: Pathways underlying metabolic reprogramming in cancer remain incompletely understood. We identify the transmembrane serine protease TMPRSS11B as a gene that promotes transformation of immortalized human bronchial epithelial cells (HBECs). TMPRSS11B is upregulated in human lung squamous cell carcinomas (LSCCs), and high expression is associated with poor survival of non-small cell lung cancer patients. TMPRSS11B inhibition in human LSCCs reduces transformation and tumor growth. Given that TMPRSS11B harbors an extracellular (EC) protease domain, we hypothesized that catalysis of a membrane-bound substrate modulates tumor progression. Interrogation of a set of soluble receptors revealed that TMPRSS11B promotes solubilization of Basigin, an obligate chaperone of the lactate monocarboxylate transporter MCT4. Basigin release mediated by TMPRSS11B enhances lactate export and glycolytic metabolism, thereby promoting tumorigenesis. These findings establish an oncogenic role for TMPRSS11B and provide support for the development of therapies that target this enzyme at the surface of cancer cells. : Updegraff et al. show that transmembrane protease TMPRSS11B is upregulated in lung squamous cell carcinoma, where it interacts with MCT4 and its obligate chaperone Basigin. TMPRSS11B catalytic activity promotes Basigin solubilization, which enhances lactate export and glycolytic metabolism, thereby promoting tumorigenesis. Keywords: TMPRSS11B, lung squamous cell carcinoma, MCT4, Basigin, lactate export, lung cancer, transmembrane serine protease, glycolytic metabolism, transposon mutagenesis, CRISPR-mediated genome editin

    Biomarker Accessible and Chemically Addressable Mechanistic Subtypes of BRAF Melanoma

    No full text
    Abstract Genomic diversity among melanoma tumors limits durable control with conventional and targeted therapies. Nevertheless, pathologic activation of the ERK1/2 pathway is a linchpin tumorigenic mechanism associated with the majority of primary and recurrent disease. Therefore, we sought to identify therapeutic targets that are selectively required for tumorigenicity in the presence of pathologic ERK1/2 signaling. By integration of multigenome chemical and genetic screens, recurrent architectural variants in melanoma tumor genomes, and patient outcome data, we identified two mechanistic subtypes of BRAFV600 melanoma that inform new cancer cell biology and offer new therapeutic opportunities. Subtype membership defines sensitivity to clinical MEK inhibitors versus TBK1/IKBKϵ inhibitors. Importantly, subtype membership can be predicted using a robust quantitative five-feature genetic biomarker. This biomarker, and the mechanistic relationships linked to it, can identify a cohort of best responders to clinical MEK inhibitors and identify a cohort of TBK1/IKBKϵ inhibitor–sensitive disease among nonresponders to current targeted therapy. Significance: This study identified two mechanistic subtypes of melanoma: (1) the best responders to clinical BRAF/MEK inhibitors (25%) and (2) nonresponders due to primary resistance mechanisms (9.9%). We identified robust biomarkers that can detect these subtypes in patient samples and predict clinical outcome. TBK1/IKBKϵ inhibitors were selectively toxic to drug-resistant melanoma. Cancer Discov; 7(8); 832–51. ©2017 AACR. See related commentary by Jenkins and Barbie, p. 799. This article is highlighted in the In This Issue feature, p. 783</jats:p
    corecore