8 research outputs found

    Detection of: N 6-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease

    Get PDF
    We found that Escherichia coli MazF toxin, an ACA-sequence-specific endoribonuclease, was sensitive to N⁶-methyladenosine (m6A), representing the first m6A-sensitive RNA cleavage enzyme. The methyl-sensitivity of MazF allowed simple analyses of both m6A demethylase and methyltransferase activity. Furthermore, the approach could be used for inhibitor screening

    Xanthine derivatives inhibit FTO in an l-ascorbic acid-dependent manner

    Get PDF
    Xanthine derivatives were identified as inhibitors of the N6-methyladenosine (m6A) demethylase activity of fat-mass-and-obesity-associated protein (FTO) by activity-based high-throughput screening using the m6A-sensitive ribonuclease MazF. Pentoxifylline exhibited L-ascorbic acid concentration-dependent inhibitory activity against FTO, an unprecedented mode of inhibition, indicating that L-ascorbic acid is a promising key for designing FTO-specific inhibitors

    Effective RNA Regulation by Combination of Multiple Programmable RNA-Binding Proteins

    Get PDF
    RNAs play important roles in gene expression through translation and RNA splicing. Regulation of specific RNAs is useful to understand and manipulate specific transcripts. Pumilio and fem-3 mRNA-binding factor (PUF) proteins, programmable RNA-binding proteins, are promising tools for regulating specific RNAs by fusing them with various functional domains. The key question is: How can PUF-based molecular tools efficiently regulate RNA functions? Here, we show that the combination of multiple PUF proteins, compared to using a single PUF protein, targeting independent RNA sequences at the 3′ untranslated region (UTR) of a target transcript caused cooperative effects to regulate the function of the target RNA by luciferase reporter assays. It is worth noting that a higher efficacy was achieved with smaller amounts of each PUF expression vector introduced into the cells compared to using a single PUF protein. This strategy not only efficiently regulates target RNA functions but would also be effective in reducing off-target effects due to the low doses of each expression vector

    Recognition of G-quadruplex RNA by a crucial RNA methyltransferase component, METTL14

    Get PDF
    N6-methyladenosine (m6A) is an important epitranscriptomic chemical modification that is mainly catalyzed by the METTL3/METTL14 RNA methyltransferase heterodimer. Although m6A is found at the consensus sequence of 5'-DRACH-3' in various transcripts, the mechanism by which METTL3/METTL14 determines its target is unclear. This study aimed to clarify the RNA binding property of METTL3/METTL14. We found that the methyltransferase heterodimer itself has a binding preference for RNA G-quadruplex (rG4) structures, which are non-canonical four-stranded structures formed by G-rich sequences, via the METTL14 RGG repeats. Additionally, the methyltransferase heterodimer selectively methylated adenosines close to the rG4 sequences. These results suggest a possible process for direct recruitment of METTL3/METTL14 to specific methylation sites, especially near the G4-forming regions. This study is the first to report the RNA binding preference of the m6A writer complex for the rG4 structure and provides insights into the role of rG4 in epitranscriptomic regulation
    corecore