7 research outputs found

    Dose- and time-dependent expression patterns of zebrafish orthologs of selected E2F target genes in response to serum starvation/replenishment

    No full text
    Targets of E2F transcription factors effectively regulate the cell cycle from worms to humans. Furthermore, the dysregulation of E2F transcription modules plays a highly conserved role in cancers of human and zebrafish. Studying E2F target expression under a given cellular state, such as quiescence, might lead to a better understanding of the conserved patterns of expression in different taxa. In the present study, we used literature searches and phylogeny to identify several targets of E2F transcription factors that are known to be serum-responsive; namely, PCNA, MYBL2, MCM7, TYMS, and CTGF. The transcriptional serum response of zebrafish orthologs of these genes were quantified under different doses (i.e., 0, 0.1, 1, 3, and 10% FBS) and time points (i.e., 6, 24 and 48 hours, h) using quantitative RT-PCR (qRT-PCR) in the zebrafish fibroblast cells (ZF4). Our results indicated that mRNA expression of zebrafish pcna, mybl2, mcm7 and tyms drastically decreased while that of ctgf increased with decreasing serum levels as observed in mammals. These genes responded to serum starvation at 24 and 48 h and to the mitogenic stimuli as early as 6 h except for ctgf whose expression was significantly altered at 24 h. The zebrafish Mcm7 protein levels also were modulated by serum starvation/replenishment. The present study provides a foundation for the comparative analysis of quantitative expression patterns for genes involved in regulation of cell cycle using a zebrafish serum response model

    Investigations Of Microtubule-Associated Protein 2 Gene Expression In Spinal Muscular Atrophy

    No full text
    Aim: Spinal muscular atrophy (SMA) is a devastating genetic disease in childhood andff is caused by the absence of functional survival motor neuron (SMN) protein, which leads to impairments of the cytoskeleton, especially in neurons. Dysregulation of actin dynamics have been linked to SMA patho mechanisms, however involvement of altered microtubule dynamics is largely unknown. In this study, we investigated differentially expressed microtubule-related genes using in vitro and in vivo SMA model systems. Materials and Methods: By focusing on microtubule-related genes, we re-analyzed publically available gene expression arrays, which were previously performed with induced pluripotent stem cell-derived motor neurons of SMA patients and the spinal cords of SMA mice. We found altered expressions of microtubule-associated protein 2 (MAP2), which was validated by real time reverse-transcription polymerase chain reaction using the SMN knock-down NSC34 cell line and the severe SMA mouse model. Results: We showed that the expression of MAP2 gene was significantly upregulated in both expression arrays. Upregulation was also detected in the brain and spinal cord tissues of severe SMA mice at different developmental stages. Conclusion: Our findings suggest that microtubule regulatory proteins may be altered in SMN depleted cells and further research is needed to elucidate the contribution of dysregulated microtubule dynamics towards SMA.Wo

    High-throughput gene expression analysis identifies p53-dependent and -independent pathways contributing to the adrenocortical dysplasia (acd) phenotype

    No full text
    WOS: 000448096300026PubMed ID: 30189268In mammalian cells TPP1, encoded by the Acd gene, is a key component of the shelterin complex, which is required for telomere length maintenance and telomere protection. In mice, a hypomorphic mutation in Acd causes the adrenocortical dysplasia (acd) phenotype, which includes limb and body axis anomalies, and perinatal lethality. p53 deficiency partially rescues limb and body axis anomalies in acd mutant embryos, but not perinatal lethality, implicating p53-independent mechanisms in the acd phenotype. Loss of function of most shelterin proteins results in early embryonic lethality. Thus, study of the hypomorphic acd allele provides a unique opportunity to understand telomere dysfunction at an organismal level. The aim of this study was to identify transcriptome alterations in acd mutant and acd, p53 double mutant embryos to understand the p53-dependent and -independent factors that contribute to the mutant phenotypes in the context of the whole organism. Genes involved in developmental processes, cell cycle, metabolic pathways, tight junctions, axon guidance and signaling pathways were regulated by p53-driven mechanisms in acd mutant embryos, while genes functioning in immune response, and RNA processing were altered independently of p53 in acd, p53 double mutant embryos. To our best of knowledge, this is the first study revealing detailed transcriptomic alterations, reflecting novel p53-dependent and -independent pathways contributing to the acd phenotype. Our data confirm the importance of cell cycle and DNA repair pathways, and suggest novel links between telomere dysfunction and immune system regulation and the splicing machinery. Given the broad applicability of telomere maintenance in growth, development, and genome stability, our data will also provide a rich resource for others studying telomere maintenance and DNA damage responses in mammalian model systems.NIH [R01HD058606, R01AG050509]; MDRTC Cell and Molecular Biology Core NIH [P30DK020572]; UM Comprehensive Cancer Center Core NIH [P30CA046592]This work was funded by NIH grants R01HD058606 and R01AG050509 to CEK. Core support was provided by the MDRTC Cell and Molecular Biology Core NIH grant P30DK020572 and the UM Comprehensive Cancer Center Core NIH grant P30CA046592

    RAB25 confers resistance to chemotherapy by altering mitochondrial apoptosis signaling in ovarian cancer cells

    No full text
    Ovarian cancer remains one of the most frequent causes of cancer-related death in women. Many patients with ovarian cancer suffer from de novo or acquired resistance to chemotherapy. Here, we report that RAB25 suppresses chemotherapy-induced mitochondrial apoptosis signaling in ovarian cancer cell lines and primary ovarian cancer cells. RAB25 blocks chemotherapy-induced apoptosis upstream of mitochondrial outer membrane permeabilization by either increasing antiapoptotic BCL-2 proteins or decreasing proapoptotic BCL-2 proteins. In particular, BAX expression negatively correlates with RAB25 expression in ovarian cancer cells. BH3 profiling assays corroborated that RAB25 decreases mitochondrial cell death priming. Suppressing RAB25 by means of RNAi or RFP14 inhibitory hydrocarbon-stapled peptide sensitizes ovarian cancer cells to chemotherapy as well as RAB25-mediated proliferation, invasion and migration. Our data suggest that RAB25 is a potential therapeutic target for ovarian cancer

    Functionally Conserved Effects of Rapamycin Exposure on Zebrafish

    Get PDF
    Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well‑known anti‑cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta‑analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose‑dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin‑modulated functional pathways between zebrafish and mice, in addition to the dose‑dependent growth curves of zebrafish embryos upon rapamycin exposure.Scopu
    corecore