271 research outputs found

    Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations

    Full text link
    Using data obtained from first-principles calculations, we show that the position of the morphotropic phase boundary (MPB) and transition temperature at MPB in ferroelectric perovskite solutions can be predicted with quantitative accuracy from the properties of the constituent cations. We find that the mole fraction of PbTiO3_3 at MPB in Pb(B'B'')O3_3-PbTiO3_3, BiBO3_3-PbTiO3_3 and Bi(B'B'')O3_3-PbTiO3_3 exhibits a linear dependence on the ionic size (tolerance factor) and the ionic displacements of the B-cations as found by density functional theory calculations. This dependence is due to competition between the local repulsion and A-cation displacement alignment interactions. Inclusion of first-principles displacement data also allows accurate prediction of transiton temperatures at the MPB. The obtained structure-property correlations are used to predict morphotropic phase boundaries and transition temperatures in as yet unsynthesized solid solutions.Comment: Accepted for publication in J. Appl. Phy

    Enhanced Tetragonality in (\u3cem\u3ex\u3c/em\u3e)PbTiO\u3csub\u3e3\u3c/sub\u3e-(1-x)Bi(\u3cem\u3eB′B″\u3c/em\u3e)O\u3csub\u3e3\u3c/sub\u3e systems: Bi(Zn\u3csub\u3e3/4\u3c/sub\u3eWN\u3csub\u3e1/4\u3c/sub\u3e)O\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    Solid solutions in the (x)PbTiO3–(1−x)Bi(Zn3/4W1/4)O3 system have been examined by x-ray diffraction, dielectric measurements, and thermal analysis. Bi(Zn3/4W1/4)O3increases the tetragonality and Curie temperature of PbTiO3 which reach a value of 1.08 and 530 °C, respectively, at the limit of the single-phase perovskite forming region (x~0.8). The observation of a sustained increase in the tetragonality in this system is similar to the behavior of the (x)PbTiO3–(1−x)Bi(Zn1/2Ti1/2)O3 system and highlights the unique properties of Bi-based systems when the B sites contain high concentrations of highly polarizable cations

    One-repetition-maximum measures or maximum bar-power output: which Is more related to sport performance?

    Get PDF
    Purpose: This study compared the associations between optimum power loads and 1-repetition maximum (1RM) values (assessed in half-squat [HS] and jump squat [JS] exercises) and multiple performance measures in elite athletes. Methods: Sixty-one elite athletes (fifteen Olympians) from four different sports (track and field [sprinters and jumpers], rugby sevens, bobsled, and soccer) performed squat and countermovement jumps, HS exercise (for assessing 1RM), HS and JS exercises (for assessing bar-power output), and sprint tests (60-m for sprinters and jumpers and 40-m for the other athletes). Pearson’s product moment correlation test was used to determine relationships between 1RM and bar-power outputs with vertical jumps and sprint times in both exercises. Results: Overall, both measurements were moderately to near perfectly related to speed performance (r values varying from -0.35 to -0.69 for correlations between 1RM and sprint times, and from -0.36 to -0.91 for correlations between bar-power outputs and sprint times; P< 0.05). However, on average, the magnitude of these correlations was stronger for power-related variables, and only the bar-power outputs were significantly related to vertical jump height. Conclusions: The bar-power outputs were more strongly associated with sprint-speed and power performance than the 1RM measures. Therefore, coaches and researchers can use the bar-power approach for athlete testing and monitoring. Due to the strong correlations presented, it is possible to infer that meaningful variations in bar-power production may also represent substantial changes in actual sport performance

    Synchronous population fluctuations of forest and field voles: implications for population management

    Get PDF
    Tkadlec, E., Suchomel, J., Purchart, L., Heroldová, M., Čepelka, L., Homolka, M

    Structure and dielectric response in the high TcT_c ferroelectric Bi(Zn,Ti)O3_3-PbTiO3_3 solid solutions

    Full text link
    Theoretical {\em ab initio} and experimental methods were used to investigate the xxBi(Zn,Ti)O3_3-(1-xx)PbTiO3_3 (BZT-PT) solid solution. We find that hybridization between Zn 4pp and O 2pp orbitals allows the formation of short, covalent Zn-O bonds, enabling favorable coupling between A-site and B-site displacements. This leads to large polarization, strong tetragonality and an elevated ferroelectric to paraelectric phase transition temperature. nhomogeneities in local structure near the 90^\circ domain boundaries can be deduced from the asymetric peak broadening in the neutron and x-ray diffraction spectra. These extrinsic effects make the ferroelectric to paraelectric phase transition diffuse in BZT-PT solid solutions

    Muscle architectural and force-velocity curve adaptations following 10 weeks of training with weightlifting catching and pulling derivatives

    Get PDF
    The aims of this study were to examine the muscle architectural, rapid force production, and force-velocity curve adaptations following 10 weeks of resistance training with either submaximal weightlifting catching (CATCH) or pulling (PULL) derivatives or pulling derivatives with phase-specific loading (OL). 27 re-sistance-trained men were randomly assigned to the CATCH, PULL, or OL groups and completed pre-and post-intervention ultrasound, countermovement jump (CMJ), and isometric mid-thigh pull (IMTP). Vastus lateralis and biceps femoris muscle thickness, pennation angle, and fascicle length, CMJ force at peak power, velocity at peak power, and peak power, and IMTP peak force and force at 100-, 150-, 200-, and 250 ms were assessed. There were no significant or meaningful differences in muscle architecture measures for any group (p \u3e 0.05). The PULL group displayed small-moderate (g = 0.25 - 0.81) improvements in all CMJ variables while the CATCH group displayed trivial effects (g = 0.00 - 0.21). In addition, the OL group displayed trivial and small effects for CMJ force (g = -0.12 - 0.04) and velocity variables (g = 0.32 - 0.46), respectively. The OL group displayed moderate (g = 0.48 - 0.73) improvements in all IMTP variables while to PULL group displayed small-moderate (g = 0.47 - 0.55) im-provements. The CATCH group displayed trivial-small (g = -0.39 - 0.15) decreases in IMTP performance. The PULL and OL groups displayed visible shifts in their force-velocity curves; however, these changes were not significant (p \u3e 0.05). Perform-ing weightlifting pulling derivatives with either submaximal or phase-specific loading may enhance rapid and peak force production characteristics. Strength and conditioning practitioners should load pulling derivatives based on the goals of each specific phase, but also allow their athletes ample exposure to achieve each goal

    Observation of the transition from lasing driven by a bosonic to a fermionic reservoir in a GaAs quantum well microcavity

    Get PDF
    We show that by monitoring the free carrier reservoir in a GaAs-based quantum well microcavity under non-resonant pulsed optical pumping, lasing supported by a fermionic reservoir (photon lasing) can be distinguished from lasing supported by a reservoir of bosons (polariton lasing). Carrier densities are probed by measuring the photocurrent between lateral contacts deposited directly on the quantum wells of a microcavity that are partially exposed by wet chemical etching. We identify two clear thresholds in the input-output characteristic of the photoluminescence signal which can be attributed to polariton and photon lasing, respectively. The power dependence of the probed photocurrent shows a distinct kink at the threshold power for photon lasing due to increased radiative recombination of free carriers as stimulated emission into the cavity mode sets in. At the polariton lasing threshold on the other hand, the nonlinear increase of the luminescence is caused by stimulated scattering of exciton-polaritons to the ground state which do not contribute directly to the photocurrent.PostprintPeer reviewe

    Selective influences of maximum dynamic strength and bar-power output on team sports performance: a comprehensive study of four different disciplines

    Get PDF
    This study examined the selective influences of one-repetition maximum (1RM) values [assessed in the half-squat (HS)] and bar-power production [assessed in both HS and jump squat (JS) exercises] on the physical performance of male and female team sport athletes from four different sports. Three-hundred and three elite players (31 Olympians) from four different disciplines (47 male soccer players, 58 female soccer players, 28 male handball players, 58 female handball players, 49 male rugby players, and 63 male futsal players) participated in this study. The physical tests were performed over 2 consecutive days for soccer and rugby players, and in 1 day for the remaining athletes. On the first day, rugby and soccer athletes performed squat jumps (SJ), countermovement jumps (CMJ), and HS 1RM. On the second day, they executed HS and JS tests (to assess the maximum bar-power output) and the linear and change-of-direction (COD) speed tests. For the other players, the sequence of the measurements was the same; however, they did not perform the HS exercise. Athletes were separated, using a median split analysis, into two distinct groups, according to their bar-power output in both JS and HS exercises and their performance in HS 1RM. The magnitude-based inferences method was used to examine the differences between “higher” and “lower” performance groups. Overall, the bar-power outputs were better connected to improved acceleration, speed, and jump performance than the 1RM measures. From these findings, it is possible to infer that players able to produce higher bar-power outputs are likely to sprint faster and jump higher. Therefore, coaches involved in team sports are strongly encouraged to use the bar-power method to evaluate the athletic performance of their players

    Molecular arrangement in water: random but not quite.

    Get PDF
    Abstract Water defines life on Earth from the cellular to the terrestrial level. Yet the molecular level arrangement in water is not well understood, posing problems in comprehending its very special chemical, physical and biological properties. Here we present high-resolution x-ray diffraction data for water clearly showing that its molecular arrangement exhibits specific correlations that are consistent with the presence of rings of The local diversity of this tetrahedral network coupled to the flexibility of the hydrogen bonds that hold it together may explain well the rich phase diagram of water and why it responds non-uniformly to external stimuli such as, for example, temperature and pressure
    corecore