1,930 research outputs found

    Comment on "The N = 3 Weyl Multiplet in Four Dimensions"

    Full text link
    N = 3 Weyl multiplet in four dimensions was first constructed in J van Muiden et al (2017) where the authors used the current multiplet approach to obtain the linearized transformation rules and completed the nonlinear variations using the superconformal algebra. The multiplet of currents was obtained by a truncation of the multiplet of currents for the N = 4 vector multiplet. While the procedure seems to be correct, the result suffers from several inconsistencies. The inconsistencies are observed in the transformation rules as well as the field dependent structure constants in the corresponding soft algebra. We take a different approach, and compute the transformation rule as well as the corresponding soft algebra by demanding consistency.Comment: 7 pages, text revision

    Entangling capabilities of Symmetric two qubit gates

    Get PDF
    Our work addresses the problem of generating maximally entangled two spin-1/2 (qubit) symmetric states using NMR, NQR, Lipkin-Meshkov-Glick Hamiltonians. Time evolution of such Hamiltonians provides various logic gates which can be used for quantum processing tasks. Pairs of spin-1/2's have modeled a wide range of problems in physics. Here we are interested in two spin-1/2 symmetric states which belong to a subspace spanned by the angular momentum basis {|j = 1, {\mu}>; {\mu} = +1, 0,-1}. Our technique relies on the decomposition of a Hamiltonian in terms of SU(3) generators. In this context, we define a set of linearly independent, traceless, Hermitian operators which provides an alternate set of SU(n) generators. These matrices are constructed out of angular momentum operators Jx,Jy,Jz. We construct and study the properties of perfect entanglers acting on a symmetric subspace i.e., spin-1 operators that can generate maximally entangled states from some suitably chosen initial separable states in terms of their entangling power.Comment: 12 page

    The H-Line Signed Graph of a Signed Graph

    Get PDF
    For standard terminology and notion in graph theory we refer the reader to Harary; the non-standard will be given in this paper as and when required. We treat only finite simple graphs without self loops and isolates

    Multilingual Language Processing From Bytes

    Full text link
    We describe an LSTM-based model which we call Byte-to-Span (BTS) that reads text as bytes and outputs span annotations of the form [start, length, label] where start positions, lengths, and labels are separate entries in our vocabulary. Because we operate directly on unicode bytes rather than language-specific words or characters, we can analyze text in many languages with a single model. Due to the small vocabulary size, these multilingual models are very compact, but produce results similar to or better than the state-of- the-art in Part-of-Speech tagging and Named Entity Recognition that use only the provided training datasets (no external data sources). Our models are learning "from scratch" in that they do not rely on any elements of the standard pipeline in Natural Language Processing (including tokenization), and thus can run in standalone fashion on raw text

    N=2N=2 dilaton Weyl multiplet in 4D supergravity

    Full text link
    We construct the dilaton Weyl multiplet for N=2N=2 conformal supergravity in four dimensions. Beginning from an on-shell vector multiplet coupled to the standard Weyl multiplet, the equations of motion can be used to eliminate the supergravity auxiliary fields, following a similar pattern as in five and six dimensions. The resulting 24+24 component multiplet includes two gauge vectors and a gauge two-form and provides a variant formulation of N=2N=2 conformal supergravity. We also show how this dilaton Weyl multiplet is contained in the minimal 32+32 Poincare supergravity multiplet introduced by Muller in superspace.Comment: 15 page
    corecore