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Abstract. Our work addresses the problem of generating maximally entangled two spin-1/2
(qubit) symmetric states using NMR, NQR, Lipkin–Meshkov–Glick Hamiltonians. Time evolution
of such Hamiltonians provides various logic gates which can be used for quantum processing tasks.
Pairs of spin-1/2s have modelled a wide range of problems in physics. Here, we are interested in
two spin-1/2 symmetric states which belong to a subspace spanned by the angular momentum basis
{|j = 1, μ〉;μ = +1, 0,−1}. Our technique relies on the decomposition of a Hamiltonian in terms
of SU(3) basis matrices. In this context, we define a set of linearly independent, traceless, Hermitian
operators which provides an alternate set of SU(n) generators. These matrices are constructed out
of angular momentum operators Jx, Jy, Jz. We construct and study the properties of perfect entan-
glers acting on a symmetric subspace, i.e., spin-1 operators that can generate maximally entangled
states from some suitably chosen initial separable states in terms of their entangling power.
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1. Introduction

In the last few years, there has been considerable increase in experimental activity aiming
to create entangled quantum states in a wide range of physical phenomena like neutral
atoms in an optical lattice, exchange of photons in cavity quantum electrodynamics, gen-
erating and manipulating N-particle entangled states in ion traps, NMR, NQR [1] etc. In
practice, these states are created by some physical operations involving the interaction
between several systems. Thus, analysing these operations with regard to the possibility
of creating maximally entangled states from an initial unentangled one is very important.
However, for arbitrary N-particle spin- 1

2 ensembles (two-level systems), these operations
are exponentially difficult to compute because a general state of the ensemble resides in
the Hilbert space C⊗N

2 and the dimension of the density matrix scales as 2N × 2N . Com-
putational investigation of entanglement of such ensembles is therefore impractical for
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all but the smallest values of N. Fortunately, many experimentally relevant states pos-
sess symmetry under particle exchange and this property allows us to significantly reduce
the computational complexity. Pairs of spin- 1

2 s have modelled a wide range of prob-
lems in physics. Considering two spin- 1

2 s (two qubits) in the symmetric subspace – the
set of those N-particle pure states that remain unchanged by permutations of individual
particles, one can then produce any entangled symmetric state by the time evolution of
properly chosen Hamiltonian, eg., NMR, NQR, quantum optics, Lipkin Hamiltonian [2]
which is widely used in nuclear physics etc. As pointed out in [3], this necessarily does
not lead to the most efficient way of creating a particular state. Knowing which states
are prohibitively expensive to produce is an important experimental question. An inter-
esting, but difficult, way to characterize this is by quantifying the resources needed to
create that state, given a certain set of generators. In this context, we define a new set of
SU(3) basis matrices constructed out of angular momentum operators Jx, Jy, Jz. These
matrices constitute a 3 × 3 linearly independent, experimentally realizable [4] Cartesian
tensor operators which can also provide different symmetric logic gates for quantum pro-
cessing tasks. As these two qubit symmetric gates are capable of producing entanglement
of quantum states, quantifying their entangling capability is very important. Makhlin [5]
has analysed nonlocal properties of general two-qubit gates and also studied some basic
properties of perfect entanglers which are defined as the unitary operators that can gen-
erate maximally entangled states from some suitably chosen separable states. Zanardi
et al [6] have explored the entangling power of quantum evolutions in terms of mean
linear entropy produced when unitary operator acts on a given distribution of pure prod-
uct states. Kraus and Cirac [7] and Rezakhani [8] have given the tools to find the best
separable two-qubit input orthonormal product states such that some given unitary trans-
formation can create maximally entangled quantum states. The entangling capability of a
unitary quantum gate can be quantified by its entangling power ep(U) [6]. Balakrishnan
et al [9] have derived ep(U) in terms of the local invariant G1. In this paper, we show
that five of the eight, two-qubit symmetric quantum gates expressed in terms of our newly
defined basis set belong to the class of perfect entanglers which can generate maximally
entangled states from some suitably chosen product states. Further, we show that these
gates belong to a family of special perfect entanglers under certain conditions. This is a
very relevant problem from both theoretical as well as experimental points of views.

1.1 Symmetric states

Our interest here is on two-qubit states, which are symmetric under particle interchange.
Symmetric states offer elegant mathematical analysis as the dimension of the Hilbert
space reduces drastically from 2N to (N + 1), when N qubits respect exchange sym-
metry. Such a Hilbert space is considered to be spanned by the eigenstates {|j, μ〉;−j ≤
μ ≤ +j} of angular momentum operators J 2 and Jz, where j = N/2. The correspond-
ing density matrix gets transformed to a 3 × 3 block form in the symmetric subspace
characterized by the maximal value of total angular momentum jmax = 1. The symmetric
subspace provides a convenient, computationally accessible class of spin states relevant to
many experimental situations such as spin squeezing. Completely symmetric systems are
experimentally interesting, largely because it is often easier to nonselectively address an
entire ensemble of particles rather than individually address each member as in the case
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of atomic assembly. Permutationally, symmetric states are useful in a variety of quantum
information processing tasks and a class of these states has recently been implemented
experimentally [10,11].

In §2, we define an alternate representation of SU(n) generators using the well-known
spherical tensor operators. Explicit form of these basis matrices in three-dimensional rep-
resentation is given in §2.1. Section 3 deals with two-qubit symmetric gates and their
entangling power in terms of local invariant G1. In §3.1, we identify the conditions under
which the perfect entangler can be classified as special perfect entangler. Further, as a real-
istic example the entangling property of Lipkin–Meshkov–Glick Hamiltonian is studied
in the spin-1 subspace.

2. Alternate representation of SU(n) generators

It is well known that any density operator for a spin j system is given by [12]

ρ( �J ) = 1

(2j + 1)

2j∑

k=0

+k∑

q=−k

tkq τ k†

q ( �J ), (1)

where τ k
q ’s (with τ 0

0 = I , the identity operator) are irreducible spherical tensor operators
of rank k in the 2j+1-dimension spin space with projection q along the axis of quan-
tization in the real three-dimensional space. The τ k

q ’s satisfy the orthogonality relation

Tr(τ k†

q τ k
′

q
′ ) = (2j + 1) δkk

′ δqq
′ . (2)

Here the normalization has been chosen so as to be in agreement with Madison convention
[13]. The spherical tensor parameters tkq which characterize the given density operator ρ

are given by t kq = Tr(ρτ k
q ). As ρ is Hermitian and τ k†

q = (−1)qτ k−q , t kq ’s satisfy the con-
dition t k

∗
q = (−1)q tk−q . The spherical tensor parameters t kq ’s have simple transformation

properties under coordinate rotation [14] in the three-dimensional space, i.e.,

(tkq )R =
+k∑

q ′=−k

Dk
q ′q(αβγ )tkq ′ , (3)

where Dk
q ′q(αβγ ) denotes Wigner-D matrix parametrized by Euler angles (αβγ ).

Following the well-known Weyl construction [14] for τ k
q in terms of angular momentum

operators Jx , Jy and Jz, we have

τ k
q ( �J ) = Nkj( �J · �	)k rk Y k

q (r̂) , (4)

where

Nkj = 2k

k!

√
4π(2j − k)!(2j + 1)

(2j + k + 1)! , (5)

are the normalization factors and Y k
q (r̂) are the spherical harmonics. Under rotations τ k

q ’s
transform according to Wigner-D matrices, i.e.,

(τ k
q ( �J ))R =

2j∑

k=0

+k∑

q=−k

Dk
q ′q(αβγ )τ k

q ′( �J ) . (6)

Pramana – J. Phys., Vol. 83, No. 2, August 2014 281



Swarnamala Sirsi, Veena Adiga and Subramanya Hegde

We now define a set of linearly independent, traceless (except (T 0)0
0), orthonormal

Hermitian basis matrices (T α)kq , where α = +,−, 0, k = 1 . . . 2j , and q = 1 to +k as
follows:

(T +)kq = τ k
q + (τ k

q )†

√
2(2j + 1)

, (7)

(T −)kq = i(τ k
q − (τ k

q )†)√
2(2j + 1)

(8)

and

(T 0)k0 = τ k
0√

2j + 1
. (9)

Observe that these matrices satisfy the relation Tr((T α)kq(T
β)k

′
q ′) = δαβδkk′δqq ′ . In our new

representation the most general density matrix can be written as

ρ = (r0)0
0(T

0)0
0 +

∑

k=1...2j

(r0)k0(T
0)k0 +

∑

α=+,−

∑

k=1...2j

∑

q=1...k

(rα)kq(T
α)kq . (10)

Apart from (T 0)0
0 which is proportional to identity matrix, there are 2j diagonal matrices

namely (T 0)k0 , k = 1 . . . 2j and the rest are off-diagonal.

2.1 SU(3) basis set

In the particular case of two-qubit symmetric subspace, our set of basis matrices (the
above matrices are equivalent to the set of matrices with different normalization defined
by R J Morris [15]) can be obtained from eqs (7)–(9) as (we have used a different notation
for the set for the sake of simplicity)

M0 =
√

2

3
τ 0

0 , M1 = τ 1
1 + τ

1†
1√

3
, M2 = i(τ 1

1 − τ
1†
1 )√

3
, (11)

M3 =
√

2

3
τ 1

0 , M4 = i(τ 2
2 − τ

2†
2 )√

3
, M5 = i(τ 2

1 − τ
2†
1 )√

3
, (12)

M6 = τ 2
1 + τ

2†
1√

3
, M7 = τ 2

2 + τ
2†
2√

3
, M8 =

√
2

3
τ 2

0 . (13)

These operators are explicitly represented in |1m〉 basis where m = 1, 0, −1 as follows:

M0 =
√

2

3

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , M1 = 1√
2

⎛

⎝
0 −1 0
−1 0 −1
0 −1 0

⎞

⎠ ,

M2 = i√
2

⎛

⎝
0 −1 0
1 0 −1
0 1 0

⎞

⎠ , M3 =
⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ ,

M4 =
⎛

⎝
0 0 i

0 0 0
−i 0 0

⎞

⎠ , M5 = i√
2

⎛

⎝
0 −1 0
1 0 1
0 −1 0

⎞

⎠ ,
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M6 = 1√
2

⎛

⎝
0 −1 0
−1 0 1
0 1 0

⎞

⎠ , M7 =
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , M8 = 1√
3

⎛

⎝
1 0 0
0 −2 0
0 0 1

⎞

⎠ .

The above matrices are normalized, i.e., Tr(MkMk′) = 2 δkk′ and M1, ...,M7 have
eigenvalues 1, 0, −1. In this representation the most general spin-1 Hamiltonian can be
written as

H(t) = 1

2

8∑

k=0

hk(t)Mk. (14)

Here Mk’s in terms of angular momentum operators Jx, Jy, Jz are given by

M1 = −(Jx), M2 = (Jy), M3 = (Jz),

M4 = −(JxJy + JyJx), M5 = (JyJz + JzJy),

M6 = −(JxJz + JzJx), M7 = (J 2
x − J 2

y ), M8 = (3J 2
z − 2).

Note that the expansion coefficients hk = Tr(HMk) are real and hence they constitute an
experimentally measurable set of parameters.

3. Two-qubit symmetric gates

Hamiltonian evolution provides the hardware for quantum gates, i.e., the time evolution of
the operators Mk’s provides various symmetric logic gates for quantum computation. The
closed form expression for eiMkθ is given by Bk = eiMkθ = I +(cos θ−1)M2

k + i sin θMk .
Here k = 1 . . . 7, θ = ζkt , where ζk is the coupling constant corresponding to each Mk

and I is the 3× 3 identity matrix. Following are the explicit forms of the gates Bk’s in the
angular momentum basis |11〉, |10〉, |1−1〉:

B1 =
⎛

⎝
cos2 θ/2 −i sin θ/

√
2 −sin2 θ/2

−i sin θ/
√

2 cos θ −i sin θ/
√

2
−sin2 θ/2 −i sin θ/

√
2 cos2 θ/2

⎞

⎠ ,

B2 =
⎛

⎝
cos2 θ/2 sin θ/

√
2 sin2 θ/2

−sin θ/
√

2 cos θ sin θ/
√

2
sin2 θ/2 −sin θ/

√
2 cos2 θ/2

⎞

⎠ ,

B3 =
⎛

⎝
cos θ + i sin θ 0 0

0 1 0
0 0 cos θ − i sin θ

⎞

⎠ , B4 =
⎛

⎝
cos θ 0 −sin θ

0 1 0
sin θ 0 cos θ

⎞

⎠ ,

B5 =
⎛

⎝
cos2 θ/2 sin θ/

√
2 −sin2 θ/2

−sin θ/
√

2 cos θ −sin θ/
√

2
−sin2 θ/2 sin θ/

√
2 cos2 θ/2

⎞

⎠ ,

B6 =
⎛

⎝
cos2 θ/2 −i sin θ/

√
2 sin2 θ/2

−i sin θ/
√

2 cos θ i sin θ/
√

2
sin2 θ/2 i sin θ/

√
2 cos2 θ/2

⎞

⎠ ,

Pramana – J. Phys., Vol. 83, No. 2, August 2014 283



Swarnamala Sirsi, Veena Adiga and Subramanya Hegde

B7 =
⎛

⎝
cos θ 0 i sin θ

0 1 0
i sin θ 0 cos θ

⎞

⎠ , B8 =
⎛

⎜⎝
eiθ/

√
3 0 0

0 e−2iθ/
√

3 0
0 0 eiθ/

√
3

⎞

⎟⎠ .

A useful property of a two-qubit symmetric gate is its ability to produce a maximally
entangled state from an unentangled one. It is well known that perfect entanglers are those
unitary operators that can generate maximally entangled states from some suitably chosen
separable states. The entangling properties of quantum operators have already been dis-
cussed in [6,9,16]. Here, we calculate the entangling power of two-qubit symmetric gates
following the simplified expression given by Balakrishnan et al [9] according to which
the gate B is a perfect entangler if its entangling power, ep(B) = 2

9 (1 − |G1|) has the
range 1

6 ≤ ep ≤ 2
9 .

The local invariant G1 ([5], table II) in terms of symmetric, unitary matrix m is given
by G1 = tr2m/16det[B]. Here m = BT

BellBBell where the gates in the Bell basis are given

by BBell = UBU † and B =
(

B 0
0 1

)
. U is the transformation matrix

U = 1√
2

⎛

⎜⎜⎝

1 0 1 0
0 −√

2i 0 0
0 0 0

√
2

−i 0 i 0

⎞

⎟⎟⎠ ,

connecting the angular momentum basis {|11〉, |10〉, |1 −1〉, |00〉} to the Bell basis
{ |↑↑〉+ |↓↓〉√

2
,
i(|↑↓〉+ |↓↑〉)√

2
,
|↑↓〉− |↓↑〉√

2
,
i(|↑↑〉− |↓↓〉)√

2

}
.

The relation ep(B)= 2
9 (1−|G1|) implies that gates having the same |G1| must necessarily

possess the same entangling power ep.
It is obvious that B1, B2, B3 do not produce entanglement as they represent rotations.

Note that |G1| = 1 and ep = 0 for the above gates. Interestingly, for the gates B4, B5, B6

and B7, |G1| = cos4 θ . Observe that since 0 ≤ G1 ≤ 1, it is clear that 0 ≤ ep(B)k ≤ 2
9

(k = 4 . . . 7). All these above-mentioned gates entangle for all values of θ except when
θ = 0, π, 2π, 3π, etc. But they are perfect entanglers for (2n + 1)(π/4) ≤ θ ≤ (2n +
3)(π/4) where n = 0, 2, 4, 6, . . . . Similarly, the gate B8 has maximum entangling power,
i.e., ep = 2/9 when θ = √

3(π/2).
As an example, consider the direct product state |ψ12〉 = |ψ1〉⊗ |ψ2〉, of two spinors in

the qubit basis. Let

|ψ12〉 =
(

cos (α1/2)

sin (α1/2)eiφ1

)
⊗

(
cos (α2/2)

sin (α2/2)eiφ2

)

=

⎛

⎜⎜⎜⎜⎝

cos (α1/2) cos (α2/2)

cos (α1/2) sin (α2/2)eiφ2

sin (α1/2) cos (α2/2)eiφ1

sin (α1/2) sin (α2/2)ei(φ1+φ2)

⎞

⎟⎟⎟⎟⎠
,
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where 0 ≤ α1,2 ≤ π , 0 ≤ φ1,2 < 2π . Note that a separable state in the symmetric,
angular momentum basis has the form

|ψ12〉sym =
⎛

⎝
cos2 (α/2)√

2sin (α/2) cos (α/2)eiφ

sin2 (α/2)e2iφ

⎞

⎠ ,

where α1 = α2 = α and φ1 = φ2 = φ. It is a well-known fact that for a pure state of
two qubits |ψ〉 = a |↑↑〉 + b |↑↓〉 + c |↓↑〉 + d |↓↓〉, the expression for concurrence is
C(ψ) = 2|ad−bc| [17]. For a maximally entangled quantum state concurrence C = 1. It
can be observed that under the action of the gates B4, B7 and B8 (with ep being maximum
i.e., 2/9), |ψ12〉sym becomes maximally entangled state when α = π/2, i.e.,

B4|ψ12〉sym

α = π/2−→ − 1

2
e2iφ|↑↑〉 + 1

2
eiφ|↑↓〉 + 1

2
eiφ|↓↑〉 + 1

2
|↓↓〉,

B7|ψ12〉sym

α = π/2−→ i

2
e2iφ|↑↑〉 + 1

2
eiφ|↑↓〉 + 1

2
eiφ|↓↑〉 + i

2
|↓↓〉,

B8|ψ12〉sym

α = π/2−→ − i

2
|↑↑〉 + 1

2
eiφ|↑↓〉 + 1

2
eiφ|↓↑〉 + i

2
e2iφ|↓↓〉.

Similarly, the gates B5, B6 acting on the symmetric separable state, transform it into
maximally entangled one when α = 0, π . For e.g.,

B5|ψ12〉sym

α = 0−→ 1

2
|↑↑〉 − 1

2
|↑↓〉 − 1

2
|↓↑〉 − 1

2
|↓↓〉,

B6|ψ12〉sym

α = 0−→ 1

2
|↑↑〉 − i

2
|↑↓〉 − i

2
|↓↑〉 + 1

2
|↓↓〉.

Note that concurrence C = 1 in all these cases. It can be noted that the operators
B8 and B4 produce spin squeezing resulting from a single axis twisting and two-axis
countertwisting, respectively [18]. Also, possibilities of physical realization of these spin
squeezing operators are given in [4].

3.1 Special perfect entanglers

Rezakhani [8] has analysed the perfect entanglers and found that some of them have the
unique property of maximally entangling a complete set of orthonormal product vectors.
Such operators belong to a well-known family of special perfect entanglers. A study of
using such special perfect entanglers as the building blocks of the most efficient universal
gate simulation is also given in [8]. Let us now study the conditions under which the
perfect entanglers B4, . . . B8 can be classified as special perfect entanglers. B4, . . . B8

in the qubit basis |↑↑〉, |↑↓〉, |↓↑〉 and |↓↓〉 are given by

B4 =

⎛

⎜⎜⎝

0 0 0 −1
0 1 0 0
0 0 1 0
1 0 0 0

⎞

⎟⎟⎠ , B5 = 1

2

⎛

⎜⎜⎝

1 1 1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 1 1 1

⎞

⎟⎟⎠ ,

Pramana – J. Phys., Vol. 83, No. 2, August 2014 285



Swarnamala Sirsi, Veena Adiga and Subramanya Hegde

B6 = 1

2

⎛

⎜⎜⎝

1 −i −i 1
−i 1 −1 i

−i −1 1 i

1 i i 1

⎞

⎟⎟⎠ , B7 =

⎛

⎜⎜⎝

0 0 0 i

0 1 0 0
0 0 1 0
i 0 0 0

⎞

⎟⎟⎠ , B8 =

⎛

⎜⎜⎝

i 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 i

⎞

⎟⎟⎠ .

Following Rezakhani [8], the most general separable basis (upto general phase factors
for each vector) can be written as

|ψ1〉 = (a |↑〉 + b |↓〉) ⊗ (c |↑〉 + d |↓〉) ,

|ψ2〉 = (−b∗ |↑〉 + a∗ |↓〉) ⊗ (c |↑〉 + d |↓〉) ,

|ψ3〉 = (e |↑〉 + f |↓〉) ⊗ (−d∗ |↑〉 + c∗ |↓〉) ,

|ψ4〉 = (−f ∗ |↑〉 + e∗ |↓〉) ⊗ (−d∗ |↑〉 + c∗ |↓〉) .

Here |a|2 + |b|2 = |c|2 + |d|2 = |e|2 + |f |2 = 1.
When the gates B4, B7 and B8 as perfect entanglers act on the state – say |ψ1〉, we

obtain

[B4,7,8]|ψ1〉 = −bd |↑↑〉 + ad |↑↓〉 + bc |↓↑〉 + ac |↓↓〉.
This state is maximally entangled if its concurrence, C = 4|abcd| = 1. Thus, these two-
qubit symmetric gates transform the orthonormal states |ψ1〉, |ψ2〉, |ψ3〉 and |ψ4〉 into
maximally entangled ones if |abcd| = |cdef | = 1

4 . Similarly, for the gates B5 and B6,
condition for finding a full set of orthonormal product states is |(a2 + b2)(c2 + d2)| =
|(e2 + f 2)(c2 + d2)| = 1.

Example: Let us consider the example of Lipkin–Meshkov–Glick interaction Hamiltonian
[2,4] which is widely used in nuclear physics.

HL = G1(J
2
+ + J 2

−) + G2(J+J− + J−J+). (15)

Here G1 and G2 are the coupling constants. In terms of our operators Mk’s,

HL = G ′
1M7 + G ′

2(
√

8M0 − M8), (16)

where G ′
1 = 2G1 and G ′

2 = (2/
√

3)G2. Since [M7,M8] = 0, we have

eiHLt = BL =
⎛

⎜⎝
e
√

3 iβcos ξ 0 ie
√

3 iβsin ξ

0 e2
√

3 iβ 0
ie

√
3 iβcos ξ 0 e

√
3 iβcos ξ

⎞

⎟⎠ ,

in spin-1 subspace. Here ξ = G ′
1t and β = G ′

2t and ep = 2
9 for 2G2t = π

2 + 2G1t . Under
the action of this gate (with ep = 2

9 ), the separable state |↑↑〉(|↓↓〉) becomes entangled
for all values of t except when t = nπ/4G1; n = 0, 1, 2 . . . and maximally entangled
when 4G1t = (2n + 1)(π/2). For e.g.,

BL|ψ12〉sym

α = 0−→ cos(2G1t) |↑↑〉 + i sin(2G1t) |↓↓〉.

286 Pramana – J. Phys., Vol. 83, No. 2, August 2014



Entangling capabilities of symmetric two-qubit gates

4. Conclusion

In conclusion, we have constructed a traceless, Hermitian and linearly independent set of
basis matrices which provides an alternate representation of SU(n) generators. As these
basis matrices are constructed out of various powers of angular momentum operators Jx ,
Jy , Jz, their physical interpretation is easier compared to the Gellmann matrices in higher
dimensions. We have considered unitary evolutions of two spin-1/2 states in angular
momentum subspace (j = 1) and constructed physically realizable logic gates using (2j+
1)-dimensional representation of the above set of basis matrices. Entangling properties of
these gates have been studied in terms of their entangling power ep. ep is found to be
maximum (2/9) for B4, ..., B8 under certain conditions which is the signature for special
perfect entanglers. These logic gates are obtained by the exponentiation of the quadratic
form of angular momentum operators Jx, Jy, Jz. As an example, we have taken the
well-known Lipkin–Meshkov–Glick Hamiltonian and studied its entangling properties in
spin-1 subspace. Further, we have shown precisely at what time the initial separable state
becomes maximally entangled under the action of perfect entanglers which consists of
one-axis twisting and two-axis twisting Hamiltonians that produce spin squeezing.
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