99 research outputs found

    Epidemiology of Myocardial Infarction

    Get PDF
    Coronary heart disease (CHD) is the leading cause of morbidity and mortality throughout the world. The most common form of CHD is the myocardial infarction. It is responsible for over 15% of mortality each year, among the vast majority of people suffering from non-ST-segment elevation myocardial infarction (NSTEMI) than ST-segment elevation myocardial infarction (STEMI). The prevalence of myocardial infarction (MI) is higher in men in all age-specific groups than women. Although the incidence of MI is decreased in the industrialized nations partly because of improved health systems and implementation of effective public health strategies, nevertheless the rates are surging in the developing countries such as South Asia, parts of Latin America, and Eastern Europe. The modifiable risk factors represent over 90% of the risk for acute MI. The risk factors such as dyslipidemia, smoking, psychosocial stressors, diabetes mellitus, hypertension, obesity, alcohol consumption, physical inactivity, and a diet low in fruits and vegetables were strongly associated with acute MI

    The impact of tooth colour on the perceptions of age and social judgements.

    Get PDF
    ObjectivePsychological research has established that the presence of dental anomalies negatively impact social judgements. This study sought to determine the effects of tooth colour on the subjective ratings of social judgements in a group of Caucasian adults.MethodsA cross sectional experimental analogue design comprised fifty Caucasian adults: 25 women and 25 men. A total of 54 digitally modified photographs of Caucasian males and females (darkened, natural, whitened teeth) were evaluated. All participants evaluated each of the images on 12 characteristics: popularity, friendliness, social life, success, graduation, happiness, intelligence, perceived age, introversion/extraversion, self-confidence, attractiveness and satisfaction with the tooth shade. Analysis of variance (ANOVA) was used to compare ratings.ResultsParticipants associated darkened teeth with poorer subjective ratings, with the highest ratings been given to whitened teeth, and natural teeth being intermediate. These trends were similar across all participant age groups and gender. Further, the gender and age groups of the images had a significant effect on the appraisals. Faces of younger models received higher ratings than the faces of older models and female images were rated higher than the males.ConclusionIn the absence of other information, tooth colour exerts an influence upon the appraisals made in social situations. It appears that whitened tooth appearance is preferred to natural tooth appearance, irrespective of age and gender of the judge. The faces with more whitened dentition are perceived to be younger across all age groups and gender of the judges. Participants dissatisfied with their own tooth shade drew out more stereotypic behaviour.Clinical significance statementThis research used standardised tooth colour as a basis to investigate perceived age and social functioning. As clinicians face daily challenges to achieve patient satisfaction with respect to dental aesthetics, standardizing the colour may enhance the patients’ satisfaction. Further, participants dissatisfied with their own tooth shade drew out more stereotypic behaviour. The whitened dentition may impair the psychological well-being of the individuals and is probably a reason for the increasing demand for cosmetic dental procedures. These results may be instructive for the development of a psycho-educational intervention to prevent any unrealistic expectations.</p

    The burden of unintentional drowning: Global, regional and national estimates of mortality from the Global Burden of Disease 2017 Study

    Get PDF
    __Background:__ Drowning is a leading cause of injury-related mortality globally. Unintentional drowning (International Classification of Diseases (ICD) 10 codes W65-74 and ICD9 E910) is one of the 30 mutually exclusive and collectively exhaustive causes of injury-related mortality in the Global Burden of Disease (GBD) study. This study's objective is to describe unintentional drowning using GBD estimates from 1990 to 2017. __Methods:__ Unintentional drowning from GBD 2017 was estimated for cause-specific mortality and years of life lost (YLLs), age, sex, country, region, Socio-demographic Index (SDI) quintile, and trends from 1990 to 2017. GBD 2017 used standard GBD methods for estimating mortality from drowning. __Results:__ Globally, unintentional drowning mortality decreased by 44.5% between 1990 and 2017, from 531 956 (uncertainty interval (UI): 484 107 to 572 854) to 295 210 (284 493 to 306 187) deaths. Global age-standardised mortality rates decreased 57.4%, from 9.3 (8.5 to 10.0) in 1990 to 4.0 (3.8 to 4.1) per 100 000 per annum in 2017. Unintentional drowning-associated mortality was generally higher in children, males and in low-SDI to middle-SDI countries. China, India, Pakistan and Bangladesh accounted for 51.2% of all drowning deaths in 2017. Oceania was the region with the highest rate of age-standardised YLLs in 2017, with 45 434 (40 850 to 50 539) YLLs per 100 000 across both sexes. __Conclusions:__ There has been a decline in global drowning rates. This study shows that the decline was not consistent across countries. The results reinforce the need for continued and improved policy, prevention and research efforts, with a focus on low-and middle-income countries

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Spatial reactant distribution in CO<sub>2</sub>electrolysis: balancing CO<sub>2</sub>utilization and faradaic efficiency

    No full text
    The production of value added C1 and C2 compounds within CO2 electrolyzers has reached sufficient catalytic performance that system and process performance-such as CO2 utilization-have come more into consideration. Efforts to assess the limitations of CO2 conversion and crossover within electrochemical systems have been performed, providing valuable information to position CO2 electrolyzers within a larger process. Currently missing, however, is a clear elucidation of the inevitable trade-offs that exist between CO2 utilization and electrolyzer performance, specifically how the faradaic efficiency of a system varies with CO2 availability. Such information is needed to properly assess the viability of the technology. In this work, we provide a combined experimental and 3D modelling assessment of the trade-offs between CO2 utilization and selectivity at 200 mA cm-2 within a membrane-electrode assembly CO2 electrolyzer. Using varying inlet flow rates we demonstrate that the variation in spatial concentration of CO2 leads to spatial variations in faradaic efficiency that cannot be captured using common 'black box' measurement procedures. Specifically, losses of faradaic efficiency are observed to occur even at incomplete CO2 consumption (80%). Modelling of the gas channel and diffusion layers indicated that at least a portion of the H2 generated is considered as avoidable by proper flow field design and modification. The combined work allows for a spatially resolved interpretation of product selectivity occurring inside the reactor, providing the foundation for design rules in balancing CO2 utilization and device performance in both lab and scaled applications. This journal is ChemE/Materials for Energy Conversion & StorageChemE/O&O groe

    BookReviews

    No full text

    Bismuth Oxychloride Dispersed on Nitrogen-Doped Carbon as Catalyst for the Electrochemical Reduction of CO<sub>2</sub> to Formate

    No full text
    Electrochemical reduction of CO2 has received significant interest for converting CO2 to value added products and closing the carbon cycle. Recent advances through catalyst development have aided in satisfying the requirements of achieving a high product selectivity, activity and long-term stability. Among various industrially valuable products, formic acid has found numerous applications such asin fuel cells and textile industry. In this work, we report the synthesis of bismuth oxychloride dispersed on nitrogen-doped carbon through a facile ion adsorption process using bismuth acetate, hydrochloric acid and urea as precursors, and discuss its performance as an electrocatalyst for the electrochemical reduction of CO2 to formate. The results show that bismuth oxychloride dispersed on nitrogen-doped carbon has good catalytic activity for CO2 reduction to formate in 0.5 M KHCO3, achieving a maximum faradaic efficiency of 84.3 % at −0.87 V versus RHE. The catalyst is found to be stable for 5 h of continuous operation and achieves a turnover frequency of 146.36 h−1.</p
    • …
    corecore