6 research outputs found

    Synthesis of tert

    No full text

    LC-ESI-MS/MS Analysis of Testosterone at Sub-Picogram Levels Using a Novel Derivatization Reagent

    No full text
    Testosterone analysis by LC-MS/MS is becoming the analytical method of choice over immunoassays due to its specificity and accuracy. However, neutral steroid hormones possess poor ionization efficiency in MS/MS, resulting in insufficient sensitivity for analyzing samples with trace concentrations of the hormones. The method presented here utilizes a derivatization step involving a novel, permanently charged, quaternary aminooxy (QAO) reagent or MS-tag that reacts to the ketone functionality of testosterone and significantly enhances its ESI-MS/MS sensitivity. This derivatization method enabled quantitation of total testosterone in human serum (200 μL) with a lower limit of quantitation (LLOQ) of 1 pg/mL (3.47 pmol/L), total testosterone in dried blood spots (8–10 μL) with a LLOQ of 40 pg/mL, and free testosterone in serum ultrafiltrate (400 μL) with a LLOQ of 0.5 pg/mL. The linearity of each of the high sensitivity applications was maintained over a broad dynamic range of 1–5000 pg/mL for the serum samples and 40–10 000 pg/mL for the dried blood spots (DBS) with <i>R</i><sup>2</sup> >0.998. The %CV at the LLOQ was <15 for all applications. The QAO derivatization and sample preparation workflows are quick, simple, and robust. Comparison of the derivatization method with an LC-ESI-MS/MS nonderivatization method yielded high correlation and agreement. The derivatization reagent is universal and reacts with other compounds containing ketone or aldehyde functionality
    corecore