38 research outputs found

    Hydrogels Based on Polyvinylpyrrolidone Copolymers

    Get PDF
    The role of polyvinylpyrrolidone (PVP) complex formation with water-soluble 2-hydroxyalkyl methacrylates is described. The impact of the complexation on both the polymerization kinetics and the formation of a copolymer structure initiated by radical initiators has been studied. The activating effect of iron(II) and iron(III) sulfates has been revealed for the initiator-free polymerization of the formulation. An analytical approach to determining the molecular weight of the chain fragments located between two neighboring cross-linking nodes in the polymer network (Mn) has been developed depending on the values of the stability constant (Кst) for the charge-transfer complexes. The basic regularities of hydrogels obtaining based on PVP copolymers with high sorption capacity and diffusion characteristics are presented. The main directions of practical application of synthesized hydrogels are considered

    Π’Π΅Ρ€ΠΌΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρ– дослідТСння ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†Ρ–Ρ— 2-гідроксіСтилмСтакрилату Π² присутності ΠΏΠΎΠ»Ρ–Π²Ρ–Π½Ρ–Π»ΠΏΡ–Ρ€ΠΎΠ»Ρ–Π΄ΠΎΠ½Ρƒ Π· одночасним відновлСнням ΠΉΠΎΠ½Ρ–Π² Π½Ρ–ΠΊΠ΅Π»ΡŽ

    Get PDF
    The kinetics of heat release during the processes of 2-hydroxyethyl methacrylate (HEMA) polymerization in the presence of polyvinylpyrrolidone (PVP) and the copolymerization of HEMA with PVP with simultaneous reduction of Ni2+ has been investigated. Nickel sulphate/sodium hypophosphite redox system in alkaline medium was used for Ni2+ reduction. The kinetic regularities of polymerization have been evaluated by thermometric method. The temperature change of the reaction medium during polymerization has been investigated by means of developed equipment, based on the reactor with properties like adiabatic one. The characteristic parameters that correspond to the time of gel formation, the time of exothermic maximum temperature reach, the range of gel effect and maximum temperature of the exotherm are identified on the obtained thermometric curves. It is determined that in the case of HEMA/PVP compositions, polymerization in the presence of benzoyl peroxide occurs with high rate already at 50 Β°C. The time of the gel effect start and maximum exothermic temperature mainly depend on the initial composition formula, solvent content, initial polymerization temperature, and also the simultaneous reduction of Ni2+ in the polymerization process. The presence of even a small content of oxidizing agent and reducing agent causes an increase of the time of gel formation start, time of maximum exothermic temperature reach and a decrease of the maximum exothermic temperature. It is determined that use of benzoyl peroxide in combination with iron (II) sulfate for initiating of HEMA copolymerization with PVP enables the process to be performed at room temperature and with a maximum exothermic temperature, which provides chemical reduction of Ni2+. The time and temperature parameters of polymerization determined in the work, as well as the main factors on which these parameters depend, will provide an opportunity to substantiate the technological parameters of metal-filled HEMA/PVP copolymers obtaining.Π—Π° допомогою Ρ‚Π΅Ρ€ΠΌΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ дослідТСно ΠΊΡ–Π½Π΅Ρ‚ΠΈΠΊΡƒ виділСння Ρ‚Π΅ΠΏΠ»Π° ΠΏΡ–Π΄ час ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†Ρ–Ρ— ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–ΠΉ Π½Π° основі 2-гідроксіСтилмСтакрилату (Π“Π•ΠœΠ) Ρ‚Π° ΠΏΠΎΠ»Ρ–Π²Ρ–Π½Ρ–Π»ΠΏΡ–Ρ€ΠΎΠ»Ρ–Π΄ΠΎΠ½Ρƒ (ΠŸΠ’ΠŸ), Ρ–Π½Ρ–Ρ†Ρ–ΠΉΠΎΠ²Π°Π½ΠΎΡ— пСроксидом Π±Π΅Π½Π·ΠΎΡ—Π»Ρƒ Π· одночасним відновлСнням Ni2+. Для відновлСння Ni2+ використано окисно-Π²Ρ–Π΄Π½ΠΎΠ²Π½Ρƒ систСму Π½Ρ–ΠΊΠ΅Π»ΡŽ ΡΡƒΠ»ΡŒΡ„Π°Ρ‚ Π½Π°Ρ‚Ρ€Ρ–ΡŽ гіпофосфіт Ρƒ Π»ΡƒΠΆΠ½ΠΎΠΌΡƒ сСрСдовищі. ΠžΡ†Ρ–Π½Π΅Π½ΠΎ Π²ΠΏΠ»ΠΈΠ² складу Π²ΠΈΡ…Ρ–Π΄Π½ΠΎΡ— ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–Ρ—, вмісту Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Π½ΠΈΠΊΠ°, ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ²ΠΎΡ— Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†Ρ–Ρ—, ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— окисника Ρ‚Π° Π²Ρ–Π΄Π½ΠΎΠ²Π½ΠΈΠΊΠ° Π½Π° ΠΊΡ–Π½Π΅Ρ‚ΠΈΡ‡Π½Ρ– ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†Ρ–Ρ— β€“ час ΠΏΠΎΡ‡Π°Ρ‚ΠΊΡƒ гСлСутворСння, час досягнСння ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡ— Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ Π΅ΠΊΠ·ΠΎΡ‚Π΅Ρ€ΠΌΡ–Ρ—, ΠΎΠ±Π»Π°ΡΡ‚ΡŒ гСль-Π΅Ρ„Π΅ΠΊΡ‚Ρƒ Ρ‚Π° ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρƒ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ Π΅ΠΊΠ·ΠΎΡ‚Π΅Ρ€ΠΌΡ–Ρ—. ВстановлСно, Ρ‰ΠΎ Ρƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ Π“Π•ΠœΠ/ΠŸΠ’ΠŸ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–ΠΉ полімСризація Ρƒ присутності пСроксиду Π±Π΅Π½Π·ΠΎΡ—Π»Ρƒ Π²Ρ–Π΄Π±ΡƒΠ²Π°Ρ”Ρ‚ΡŒΡΡ Π· високою ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΡ‚ΡŽ Π²ΠΆΠ΅ Π·Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ 50Β°Π‘. Π”ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ використання комплСксного Ρ–Π½Ρ–Ρ†Ρ–Π°Ρ‚ΠΎΡ€Π°, який ΡΠΊΠ»Π°Π΄Π°Ρ”Ρ‚ΡŒΡΡ Π· ΡΡƒΠ»ΡŒΡ„Π°Ρ‚Ρƒ Π·Π°Π»Ρ–Π·Π° (Π†Π†) Ρ‚Π° пСроксиду Π±Π΅Π½Π·ΠΎΡ—Π»Ρƒ, Π΄Π°Ρ” ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Π·Π΄Ρ–ΠΉΡΠ½ΡŽΠ²Π°Ρ‚ΠΈ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†Ρ–ΡŽ Π“Π•ΠœΠ/ΠŸΠ’ΠŸ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†Ρ–ΠΉ Π·Π° ΠΊΡ–ΠΌΠ½Π°Ρ‚Π½ΠΎΡ— Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ Ρ‚Π° Π· максимальною Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΡŽ Π΅ΠΊΠ·ΠΎΡ‚Π΅Ρ€ΠΌΡ–Ρ—, яка Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” Ρ…Ρ–ΠΌΡ–Ρ‡Π½Π΅ осадТСння ΠΌΠ΅Ρ‚Π°Π»Ρƒ. ВиявлСно, Ρ‰ΠΎ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°, Π΄ΠΎ якої Π½Π°Π³Ρ€Ρ–Π²Π°Ρ”Ρ‚ΡŒΡΡ Ρ€Π΅Π°ΠΊΡ†Ρ–ΠΉΠ½Π΅ сСрСдовищС, ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ Π΄ΠΎΡΡ‚Π°Ρ‚Π½ΡŒΠΎΡŽ для ΠΏΠ΅Ρ€Π΅Π±Ρ–Π³Ρƒ Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΡ— Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ— відновлСння Ni2+

    Investigation of Composite Materials based on Modified Novolac Phenol-Formaldehyde Resin

    No full text

    Effect of magnetic field on the structure formation and properties of hydroxyethylmethacrylate / polyvinylpyrrolidone copolymers

    No full text
    The effect of a permanent magnetic field on the polymerization kinetics and structural parameters of a hydrogel network on the basis of 2-hydroxyethylmethacrylate with polyvinylpyrrolidone compositions has been investigated. It has been shown that the magnetic field activates matrix polymerization of mentioned compositions and assists in the structure formation of copolymers with a smaller crosslink density. The efficiency of the developed polymeric materials for production of ultrathin contact lenses "Glipox" has been confirmed

    Π’Π΅Ρ€ΠΌΠΎΠ³Ρ€Π°Π²Ρ–ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρ– дослідТСння ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π² Π½Π° основі ΡΡƒΠΌΡ–ΡˆΠ΅ΠΉ ΠΏΠΎΠ»Ρ–ΠΏΡ€ΠΎΠΏΡ–Π»Π΅Π½Ρƒ Ρ‚Π° ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ–Π°ΠΌΡ–Π΄Ρƒ

    No full text
    We established in the present work the regularities for obtaining homogeneous nanocomposites based on the mixture of PP/PA-6 with montmorillonite modified using PVP. In these nanocomposites, PA-6 and MMT contribute to the increase in thermal resistance of the material, while PVP improves compatibility between polar PA-6 and hydrophobic PP.The goal of the present work was to investigate by applying the methods of thermogravimetric analysis a correlation between thermal characteristics of the newly-created nanocomposites based on the mixture of PE/PA-6 with montmorillonite, modified using PVP, and to determine the optimal composition of a nanocomposite with enhanced thermal resistance and a wide temperature interval of the viscous-fluid state.On the basis of experimental data, it was found that the mixtures of polypropylene with polyamide modified by the montmorillonite-polyvinylpyrrolidone mixture are distinguished by the higher thermal resistance compared with the starting PP. It is established that at a content of the modified polyamide in the mixtures with polypropylene within 30 % by weight, samples of the composite are characterized by the highest thermal resistance β€’ weight loss of such composites in a temperature range of 218β€’322 ΒΊC is only 7.1 %, temperature of the onset of thermo-oxidation destruction is 300 ΒΊC. It is shown that the developed nanocomposites have wider temperature intervals of the viscous-fluid state – 126–300 ΒΊC. This makes it possible, by changing the modes of processing, to influence the structure and properties of products, especially taking into account the difference in crystallization of the material depending on the conditions and the method of processing. It is established that the most suitable for application and processing is the mixture of polypropylene with modified polyamide in the ratio 70:30 % by weight, respectivelyΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ-тСрмичСского, тСрмогравимСтричСского ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ-тСрмогравимСтричСского Π°Π½Π°Π»ΠΈΠ·ΠΎΠ² исслСдованы ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ‹ Π½Π° основС смСсСй ΠΏΠΎΠ»ΠΈΠΏΡ€ΠΎΠΏΠΈΠ»Π΅Π½Π° с ΠΏΠΎΠ»ΠΈΠ°ΠΌΠΈΠ΄ΠΎΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½ ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»Π»ΠΎΠ½ΠΈΡ‚ΠΎΠΌ, ΠΈΠ½Ρ‚Π΅Ρ€ΠΊΠ°Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΏΠΎΠ»ΠΈΠ²ΠΈΠ½ΠΈΠ»ΠΏΠΈΡ€Ρ€ΠΎΠ»ΠΈΠ΄ΠΎΠ½ΠΎΠΌ. Показано, Ρ‡Ρ‚ΠΎ смСси ΠΏΠΎΠ»ΠΈΠΏΡ€ΠΎΠΏΠΈΠ»Π΅Π½Π° с ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»Π»ΠΎΠ½ΠΈΡ‚-ΠΏΠΎΠ»ΠΈΠ²ΠΈΠ½ΠΈΠ»ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ΄ΠΎΠ½ΠΎΠ²ΠΎΠΉ смСсью ΠΏΠΎΠ»ΠΈΠ°ΠΌΠΈΠ΄ΠΎΠΌ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒΡŽ. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ содСрТании ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠ°ΠΌΠΈΠ΄Π° Π² смСсях с ΠΏΠΎΠ»ΠΈΠΏΡ€ΠΎΠΏΠΈΠ»Π΅Π½ΠΎΠΌ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… 30 % масс. ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π° Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ Π½Π°ΠΉΠ²Ρ‹ΡΡˆΠΎΠΉ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒΡŽΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎ-Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ, Ρ‚Π΅Ρ€ΠΌΠΎΠ³Ρ€Π°Π²Ρ–ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ‚Π° Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎ-Ρ‚Π΅Ρ€ΠΌΠΎΠ³Ρ€Π°Π²Ρ–ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρ–Π² дослідТСно ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ Π½Π° основі ΡΡƒΠΌΡ–ΡˆΠ΅ΠΉ ΠΏΠΎΠ»Ρ–ΠΏΡ€ΠΎΠΏΡ–Π»Π΅Π½Ρƒ Π· ΠΏΠΎΠ»Ρ–Π°ΠΌΡ–Π΄ΠΎΠΌ, ΠΊΠΎΡ‚Ρ€ΠΈΠΉ ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎ ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΠΉ ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»ΠΎΠ½Ρ–Ρ‚ΠΎΠΌ, Ρ–Π½Ρ‚Π΅Ρ€ΠΊΠ°Π»ΡŒΠΎΠ²Π°Π½ΠΈΠΌ ΠΏΠΎΠ»Ρ–Π²Ρ–Π½Ρ–Π»ΠΏΡ–Ρ€ΠΎΠ»Ρ–Π΄ΠΎΠ½ΠΎΠΌ. Показано, Ρ‰ΠΎ ΡΡƒΠΌΡ–ΡˆΡ– ΠΏΠΎΠ»Ρ–ΠΏΡ€ΠΎΠΏΡ–Π»Π΅Π½Ρƒ Π· ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΠΌ ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»ΠΎΠ½Ρ–Ρ‚-ΠΏΠΎΠ»Ρ–Π²Ρ–Π½Ρ–Π»ΠΏΡ–Ρ€ΠΎΠ»Ρ–Π΄ΠΎΠ½ΠΎΠ²ΠΎΡŽ ΡΡƒΠΌΡ–ΡˆΡˆΡŽ ΠΏΠΎΠ»Ρ–Π°ΠΌΡ–Π΄ΠΎΠΌ Π²Ρ–Π΄Π·Π½Π°Ρ‡Π°ΡŽΡ‚ΡŒΡΡ ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½ΠΎΡŽ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Ρ–ΠΉΠΊΡ–ΡΡ‚ΡŽ. ВстановлСно, Ρ‰ΠΎ Π·Π° вмісту ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ–Π°ΠΌΡ–Π΄Ρƒ Π² ΡΡƒΠΌΡ–ΡˆΠ°Ρ… Π· ΠΏΠΎΠ»Ρ–ΠΏΡ€ΠΎΠΏΡ–Π»Π΅Π½ΠΎΠΌ Π² ΠΌΠ΅ΠΆΠ°Ρ… 30 % мас. Π·Ρ€Π°Π·ΠΊΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρƒ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡŒΡΡ Π½Π°ΠΉΠ²ΠΈΡ‰ΠΎΡŽ тСрмостійкіст
    corecore