598 research outputs found
Quality of survival: a new concept framework to assess the quality of prolonged life in cancer
Background: Improved cancer care means that more patients are surviving longer, but there is a need to examine how well patients survive. We conducted an exploratory analysis of a new conceptual framework termed ‘quality of survival’ (QoS) that delineates the quality of patients’ experience.
Methods: This project included an electronic database search to investigate the survivorship landscape and to create a visual QoS map and semi-structured interviews with patients (n = 35), clinicians (n = 40), and payers (n = 7) to support the QoS map. QoS was discussed in the context of two tumor types, metastatic non-small cell lung cancer and metastatic melanoma.
Results: Despite increased long-term survival, no specific definition of QoS exists. Patients reported many impacts that affect QoS, clinicians viewed QoS as relevant to treatment decisions, and payers felt it could help communicate different aspects relevant to the patient. Four interconnected QoS dimensions were developed (quality of life, survival, side effects, and economic impact), which vary in importance along the care continuum.
Conclusion: QoS is a patient-centric concept that could help decision-making and patient communication. The QoS map could provide a framework to monitor patient experience and help patients frame what treatment attribute is most important to them at any point in the cancer continuum
Effect of smoking status on total energy expenditure
Individuals who smoke generally have a lower body mass index (BMI) than nonsmokers. The relative roles of energy expenditure and energy intake in maintaining the lower BMI, however, remain controversial. We tested the hypothesis that current smokers have higher total energy expenditure than never smokers in 308 adults aged 40-69 years old of which 47 were current smokers. Energy expenditure was measured by doubly labeled water during a two week period in which the subjects lived at home and performed their normal activities. Smoking status was determined by questionnaire. There were no significant differences in mean BMI (mean ± SD) between smokers and never smokers for either males (27.8+5.1 kg/m2 vs. 27.5+4.0 kg/m2) or females (26.5+5.3 kg/m2 vs. 28.1+6.6 kg/m2), although the difference in females was of similar magnitude to previous reports. Similarly, total energy expenditure of male smokers (3069+764 kcal/d) was not significantly different from that of never smokers (2854+468 kcal/d), and that of female smokers (2266+387 kcal/d) was not different from that of never smokers (2330+415 kcal/d). These findings did not change after adjustment for age, fat-free mass and self-reported physical activity. Using doubly labeled water, we found no evidence of increased energy expenditure among smokers, however, it should be noted that BMI differences in this cohort also did not differ by smoking status
A Common CNR1 (Cannabinoid Receptor 1) Haplotype Attenuates the Decrease in HDL Cholesterol That Typically Accompanies Weight Gain
We have previously shown that genetic variability in CNR1 is associated with low HDL dyslipidemia in a multigenerational obesity study cohort of Northern European descent (209 families, median = 10 individuals per pedigree). In order to assess the impact of CNR1 variability on the development of dyslipidemia in the community, we genotyped this locus in all subjects with class III obesity (body mass index >40 kg/m2) participating in a population-based biobank of similar ancestry. Twenty-two haplotype tagging SNPs, capturing the entire CNR1 gene locus plus 15 kb upstream and 5 kb downstream, were genotyped and tested for association with clinical lipid data. This biobank contains data from 645 morbidly obese study subjects. In these subjects, a common CNR1 haplotype (H3, frequency 21.1%) is associated with fasting TG and HDL cholesterol levels (p = 0.031 for logTG; p = 0.038 for HDL-C; p = 0.00376 for log[TG/HDL-C]). The strength of this relationship increases when the data are adjusted for age, gender, body mass index, diet and physical activity. Mean TG levels were 160±70, 155±70, and 120±60 mg/dL for subjects with 0, 1, and 2 copies of the H3 haplotype. Mean HDL-C levels were 45±10, 47±10, and 48±9 mg/dL, respectively. The H3 CNR1 haplotype appears to exert a protective effect against development of obesity-related dyslipidemia
Novel Technologies for Assessing Dietary Intake: Evaluating the Usability of a Mobile Telephone Food Record Among Adults and Adolescents
The development of a mobile telephone food record has the potential to ameliorate much of the burden associated with current methods of dietary assessment. When using the mobile telephone food record, respondents capture an image of their foods and beverages before and after eating. Methods of image analysis and volume estimation allow for automatic identification and volume estimation of foods. To obtain a suitable image, all foods and beverages and a fiducial marker must be included in the image
Dietary assessment in food environment research: A systematic review
The existing evidence on food environments and diet is inconsistent, potentially due in part to heterogeneity in measures used to assess diet. The objective of this review, conducted in 2012–2013, was to examine measures of dietary intake utilized in food environment research
Genome-Wide Meta-Analysis Identifies Regions on 7p21 (AHR) and 15q24 (CYP1A2) As Determinants of Habitual Caffeine Consumption
We report the first genome-wide association study of habitual caffeine intake. We included 47,341 individuals of European descent based on five population-based studies within the United States. In a meta-analysis adjusted for age, sex, smoking, and eigenvectors of population variation, two loci achieved genome-wide significance: 7p21 (P = 2.4×10−19), near AHR, and 15q24 (P = 5.2×10−14), between CYP1A1 and CYP1A2. Both the AHR and CYP1A2 genes are biologically plausible candidates as CYP1A2 metabolizes caffeine and AHR regulates CYP1A2
Recommended from our members
Online dietary intake estimation : The food4me food frequency questionnaire
Copyright ©Hannah Forster, Rosalind Fallaize, Caroline Gallagher, Clare B O’Donovan, Clara Woolhead, Marianne C Walsh, Anna L Macready, Julie A Lovegrove, John C Mathers, Michael J Gibney, Lorraine Brennan, Eileen R Gibney. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 09.06.2014. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.Dietary assessment methods are important tools for nutrition research. Online dietary assessment tools have the potential to become invaluable methods of assessing dietary intake because, compared with traditional methods, they have many advantages including the automatic storage of input data and the immediate generation of nutritional outputs. Objective: The aim of this study was to develop an online food frequency questionnaire (FFQ) for dietary data collection in the Food4Me study and to compare this with the validated European Prospective Investigation of Cancer (EPIC) Norfolk printed FFQ. Methods: The Food4Me FFQ used in this analysis was developed to consist of 157 food items. Standardized color photographs were incorporated in the development of the Food4Me FFQ to facilitate accurate quantification of the portion size of each food item. Participants were recruited in two centers (Dublin, Ireland and Reading, United Kingdom) and each received the online Food4Me FFQ and the printed EPIC-Norfolk FFQ in random order. Participants completed the Food4Me FFQ online and, for most food items, participants were requested to choose their usual serving size among seven possibilities from a range of portion size pictures. The level of agreement between the two methods was evaluated for both nutrient and food group intakes using the Bland and Altman method and classification into quartiles of daily intake. Correlations were calculated for nutrient and food group intakes. Results: A total of 113 participants were recruited with a mean age of 30 (SD 10) years (40.7% male, 46/113; 59.3%, 67/113 female). Cross-classification into exact plus adjacent quartiles ranged from 77% to 97% at the nutrient level and 77% to 99% at the food group level. Agreement at the nutrient level was highest for alcohol (97%) and lowest for percent energy from polyunsaturated fatty acids (77%). Crude unadjusted correlations for nutrients ranged between .43 and .86. Agreement at the food group level was highest for other fruits (eg, apples, pears, oranges) and lowest for cakes, pastries, and buns. For food groups, correlations ranged between .41 and .90. Conclusions: The results demonstrate that the online Food4Me FFQ has good agreement with the validated printed EPIC-Norfolk FFQ for assessing both nutrient and food group intakes, rendering it a useful tool for ranking individuals based on nutrient and food group intakes.Peer reviewedFinal Published versio
Disparities in healthy food zoning, farmers’ market availability, and fruit and vegetable consumption among North Carolina residents
Background
Context and purpose of the study. To examine (1) associations between county-level zoning to support farmers’ market placement and county-level farmers’ market availability, rural/urban designation, percent African American residents, and percent of residents living below poverty and (2) individual-level associations between zoning to support farmers’ markets; fruit and vegetable consumption and body mass index (BMI) among a random sample of residents of six North Carolina (NC) counties.
Methods
Zoning ordinances were scored to indicate supportiveness for healthy food outlets. Number of farmers’ markets (per capita) was obtained from the NC-Community Transformation Grant Project Fruit and Vegetable Outlet Inventory (2013). County-level census data on rural/urban status, percent African American, and percent poverty were obtained. For data on farmers’ market shopping, fruit and vegetable consumption, and BMI, trained interviewers conducted a random digit dial telephone survey of residents of six NC counties (3 urban and 3 rural). Pearson correlation coefficients and multilevel linear regression models were used to examine county-level and individual-level associations between zoning supportiveness, farmers’ market availability, and fruit and vegetable consumption and BMI.
Results
At the county-level, healthier food zoning was greater in more urban areas and areas with less poverty. At the individual-level, self-reported fruit and vegetable consumption was associated with healthier food zoning.
Conclusions
Disparities in zoning to promote healthy eating should be further examined, and future studies should assess whether amending zoning ordinances will lead to greater availability of healthy foods and changes in dietary behavior and health outcomes.ECU Open Access Publishing Support Fun
- …