32 research outputs found

    Design and Construction of a One- Dimensional DNA Track for an Artificial Molecular Motor

    Get PDF
    DNA is a versatile heteropolymer that shows great potential as a building block for a diverse array of nanostructures. We present here a solution to the problem of designing and synthesizing a DNA-based nanostructure that will serve as the track along which an artificial molecular motor processes. This one-dimensional DNA track exhibits periodically repeating elements that provide specific binding sites for the molecular motor. Besides these binding elements, additional sequences are necessary to label specific regions within the DNA track and to facilitate track construction. Designing an ideal DNA track sequence presents a particular challenge because of the many variable elements that greatly expand the number of potential sequences from which the ideal sequence must be chosen. In order to find a suitable DNA sequence, we have adapted a genetic algorithm which is well suited for a large but sparse search space. This algorithm readily identifies long DNA sequences that include all the necessary elements to both facilitate DNA track construction and to present appropriate binding sites for the molecular motor. We have successfully experimentally incorporated the sequence identified by the algorithm into a long DNA track meeting the criteria for observation of the molecular motor's activity

    Twisting DNA by salt

    Get PDF
    The structure and properties of DNA depend on the environment, in particular the ion atmosphere. Here, we investigate how DNA twist -one of the central properties of DNA- changes with concentration and identity of the surrounding ions. To resolve how cations influence the twist, we combine single-molecule magnetic tweezer experiments and extensive all-atom molecular dynamics simulations. Two interconnected trends are observed for monovalent alkali and divalent alkaline earth cations. First, DNA twist increases monotonously with increasing concentration for all ions investigated. Second, for a given salt concentration, DNA twist strongly depends on cation identity. At 100 mM concentration, DNA twist increases as Na+ + + 2+ + ≈ Cs+ 2+ 2+ 2+. Our molecular dynamics simulations reveal that preferential binding of the cations to the DNA backbone or the nucleobases has opposing effects on DNA twist and provides the microscopic explanation of the observed ion specificity. However, the simulations also reveal shortcomings of existing force field parameters for Cs+ and Sr2+. The comprehensive view gained from our combined approach provides a foundation for understanding and predicting cation-induced structural changes both in nature and in DNA nanotechnology

    Molecular structure, DNA binding mode, photophysical properties and recommendations for use of SYBR Gold

    Get PDF
    SYBR Gold is a commonly used and particularly bright fluorescent DNA stain, however, its chemical structure is unknown and its binding mode to DNA remains controversial. Here, we solve the structure of SYBR Gold by NMR and mass spectrometry to be 2-N-(3-dimethylaminopropyl)-N-propylamino]-4-2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene-1-phenyl-quinolinium and determine its extinction coefficient. We quantitate SYBR Gold binding to DNA using two complementary approaches. First, we use single-molecule magnetic tweezers (MT) to determine the effects of SYBR Gold binding on DNA length and twist. The MT assay reveals systematic lengthening and unwinding of DNA by 19.1° ± 0.7° per molecule upon binding, consistent with intercalation, similar to the related dye SYBR Green I. We complement the MT data with spectroscopic characterization of SYBR Gold. The data are well described by a global binding model for dye concentrations ≤2.5~μM, with parameters that quantitatively agree with the MT results. The fluorescence increases linearly with the number of intercalated SYBR Gold molecules up to dye concentrations of ∼2.5~μM, where quenching and inner filter effects become relevant. In summary, we provide a mechanistic understanding of DNA-SYBR Gold interactions and present practical guidelines for optimal DNA detection and quantitative DNA sensing applications using SYBR Gold

    High-throughput AFM analysis reveals unwrapping pathways of H3 and CENP-A nucleosomes

    Get PDF
    Nucleosomes, the fundamental units of chromatin, regulate readout and expression of eukaryotic genomes. Single-molecule experiments have revealed force-induced nucleosome accessibility, but a high-resolution unwrapping landscape in the absence of external forces is currently lacking. Here, we introduce a high-throughput pipeline for the analysis of nucleosome conformations based on atomic force microscopy and automated, multi-parameter image analysis. Our data set of ∼10 000 nucleosomes reveals multiple unwrapping states corresponding to steps of 5 bp DNA. For canonical H3 nucleosomes, we observe that dissociation from one side impedes unwrapping from the other side, but in contrast to force-induced unwrapping, we find only a weak sequence-dependent asymmetry. Notably, centromeric CENP-A nucleosomes do not unwrap anti-cooperatively, in stark contrast to H3 nucleosomes. Finally, our results reconcile previous conflicting findings about the differences in height between H3 and CENP-A nucleosomes. We expect our approach to enable critical insights into epigenetic regulation of nucleosome structure and stability and to facilitate future high-throughput AFM studies that involve heterogeneous nucleoprotein complexes. This journal i

    A conformational transition of the D9D3 domain primes von Willebrand factor for multimerization

    Get PDF
    Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that is critically involved in hemostasis. Biosynthesis of long VWF concatemers in the endoplasmic reticulum and the trans-Golgi is still not fully understood. We use the single-molecule force spectroscopy technique magnetic tweezers to analyze a previously hypothesized conformational change in the D9D3 domain crucial for VWF multimerization. We find that the interface formed by submodules C8-3, TIL3, and E3 wrapping around VWD3 can open and expose 2 buried cysteines, Cys1099 and Cys1142, that are vital for multimerization. By characterizing the conformational change at varying levels of force, we can quantify the kinetics of the transition and stability of the interface. We find a pronounced destabilization of the interface on lowering the pH from 7.4 to 6.2 and 5.5. This is consistent with initiation of the conformational change that enables VWF multimerization at the D9D3 domain by a decrease in pH in the trans-Golgi network and Weibel-Palade bodies. Furthermore, we find a stabilization of the interface in the presence of coagulation factor VIII, providing evidence for a previously hypothesized binding site in submodule C8-3. Our findings highlight the critical role of the D9D3 domain in VWF biosynthesis and function, and we anticipate our methodology to be applicable to study other, similar conformational changes in VWF and beyond

    A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are initiated by attachment of the receptor-binding domain (RBD) on the viral Spike protein to angiotensin-converting enzyme-2 (ACE2) on human host cells. This critical first step occurs in dynamic environments, where external forces act on the binding partners and avidity effects play an important role, creating an urgent need for assays that can quantitate SARS-CoV-2 interactions with ACE2 under mechanical load. Here, we introduce a tethered ligand assay that comprises the RBD and the ACE2 ectodomain joined by a flexible peptide linker. Using magnetic tweezers and atomic force spectroscopy as highly complementary single-molecule force spectroscopy techniques, we investigate the RBD:ACE2 interaction over the whole physiologically relevant force range. We combine the experimental results with steered molecular dynamics simulations and observe and assign fully consistent unbinding and unfolding events across the three techniques, enabling us to establish ACE2 unfolding as a molecular fingerprint. Measuring at forces of 2 to 5 pN, we quantify the force dependence and kinetics of the RBD:ACE2 bond in equilibrium. We show that the SARS-CoV-2 RBD:ACE2 interaction has higher mechanical stability, larger binding free energy, and a lower dissociation rate compared to SARS-CoV-1, which helps to rationalize the different infection patterns of the two viruses. By studying how free ACE2 outcompetes tethered ACE2, we show that our assay is sensitive to prevention of bond formation by external binders. We expect our results to provide a way to investigate the roles of viral mutations and blocking agents for targeted pharmaceutical intervention.This study was supported by German Research Foundation Projects 386143268 and 111166240, a Human Frontier Science ProgramCross Disciplinary Fellowship (LT000395/2020C) and European Molecular Biology Organization Non-Stipendiary long-term fellowship (ALTF 1047-2019) to L.F.M., and the Physics Department of LMU Munich. R.C.B. and P.S.F.C.G. are supported by start-up funds provided by Auburn University, and D.L. acknowledges support from the Spanish Ministry of Science, Innovation and Universities for the Spanish State Research Agency Retos Grant RTI2018- 099318-B-I00, cofunded by the European Regional Development Fund.Peer reviewe

    A Tethered Ligand Assay to Probe SARS-CoV-2:ACE2 Interactions

    Get PDF
    SARS-CoV-2 infections are initiated by attachment of the receptor-binding domain (RBD) on the viral Spike protein to angiotensin-converting enzyme-2 (ACE2) on human host cells. This critical first step occurs in dynamic environments, where external forces act on the binding partners and multivalent interactions play critical roles, creating an urgent need for assays that can quantitate SARS-CoV-2 interactions with ACE2 under mechanical load and in defined geometries. Here, we introduce a tethered ligand assay that comprises the RBD and the ACE2 ectodomain joined by a flexible peptide linker. Using magnetic tweezers and atomic force spectroscopy as highly complementary single-molecule force spectroscopy techniques, we investigate the RBD:ACE2 interaction over the whole physiologically relevant force range. We combine the experimental results with steered molecular dynamics simulations and observe and assign fully consistent unbinding and unfolding events across the three techniques, enabling us to establish ACE2 unfolding as a molecular fingerprint. Measuring at forces of 2-5 pN, we quantify the force dependence and kinetics of the RBD:ACE2 bond in equilibrium. We show that the SARS-CoV-2 RBD:ACE2 interaction has higher mechanical stability, larger binding free energy, and a lower dissociation rate in comparison to SARS-CoV-1, which helps to rationalize the different infection patterns of the two viruses. By studying how free ACE2 outcompetes tethered ACE2, we show that our assay is sensitive to prevention of bond formation by external binders. We expect our results to provide a novel way to investigate the roles of mutations and blocking agents for targeted pharmaceutical intervention.N

    A Gentle Twist on DNA

    No full text
    A new technique allows measurements of DNA’s resistance to twisting under previously hard-to-access, biologically relevant conditions

    Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images

    No full text
    A new global analysis algorithm to analyse (hyper-) spectral images is presented. It is based on the phasor representation that has been demonstrated to be very powerful for the analysis of lifetime imaging data. In spectral phasor analysis the fluorescence spectrum of each pixel in the image is Fourier transformed. Next, the real and imaginary components of the first harmonic of the transform are employed as X and Y coordinates in a scatter (spectral phasor) plot. Importantly, the spectral phasor representation allows for rapid (real time) semi-blind spectral unmixing of up to three components in the image. This is demonstrated on slides with fixed cells containing three fluorescent labels. In addition the method is used to analyse autofluorescence of cells in a fresh grass blade. It is shown that the spectral phasor approach is compatible with spectral imaging data recorded with a low number of spectral channels
    corecore