271 research outputs found

    Phase diagram of Pb(Zr,Ti)O3 solid solutions from first principles

    Full text link
    A first-principles-derived scheme, that incorporates ferroelectric and antiferrodistortive degrees of freedom, is developed to study finite-temperature properties of PbZr1-xTixO3 solid solutions near its morphotropic phase boundary. The use of this numerical technique (i) resolves controversies about the monoclinic ground-state for some Ti compositions, (ii) leads to the discovery of an overlooked phase, and (iii) yields three multiphase points, that are each associated with four phases. Additional neutron diffraction measurements strongly support some of these predictions.Comment: 10 pages, 2 figure

    Magnetic structure and charge ordering in Fe3BO5 ludwigite

    Full text link
    The crystal and magnetic structures of the three-leg ladder compound Fe3BO5 have been investigated by single crystal x-ray diffraction and neutron powder diffraction. Fe3BO5 contains two types of three-leg spin ladders. It shows a charge ordering transition at 283 K, an antiferromagnetic transition at 112 K, ferromagnetism below 70 K and a weak ferromagnetic behavior below 40K. The x-ray data reveal a smooth charge ordering and an incomplete charge localization down to 110K. Below the first magnetic transition, the first type of ladders orders as ferromagnetically coupled antiferromagnetic chains, while below 70K the second type of ladders orders as antiferromagnetically coupled ferromagnetic chains

    Modulated structure in the martensite phase of Ni1.8Pt0.2MnGa: a neutron diffraction study

    Full text link
    7M orthorhombic modulated structure in the martensite phase of Ni1.8Pt0.2MnGa is reported by powder neutron diffraction study, which indicates that it is likely to exhibit magnetic field induced strain. The change in the unit cell volume is less than 0.5% between the austenite and martensite phases, as expected for a volume conserving martensite transformation. The magnetic structure analysis shows that the magnetic moment in the martensite phase is higher compared to Ni2MnGa, which is in good agreement with magnetization measurement

    Domain Wall Spin Dynamics in Kagome Antiferromagnets

    Full text link
    We report magnetization and neutron scattering measurements down to 60 mK on a new family of Fe based kagome antiferromagnets, in which a strong local spin anisotropy combined with a low exchange path network connectivity lead to domain walls intersecting the kagome planes through strings of free spins. These produce unfamiliar slow spin dynamics in the ordered phase, evolving from exchange-released spin-flips towards a cooperative behavior on decreasing the temperature, probably due to the onset of long-range dipolar interaction. A domain structure of independent magnetic grains is obtained that could be generic to other frustrated magnets.Comment: 5 pages, 4 figure

    Structure and dynamics of the fullerene polymer Li4 C60 studied with neutron scattering

    Full text link
    The two-dimensional polymer structure and lattice dynamics of the superionic conductor Li4 C60 are investigated by neutron diffraction and spectroscopy. The peculiar bonding architecture of this compound is definitely confirmed through the precise localisation of the carbon atoms involved in the intermolecular bonds. The spectral features of this phase are revealed through ab-initio lattice dynamics calculations and inelastic neutron scattering experiments. The neutron observables are found to be in very good agreement with the simulations which predict a partial charge transfer from the Li atoms to the C60 cage. The absence of a well defined band associated to one category of the Li atoms in the experimental spectrum suggests that this species is not ordered even at the lowest temperatures. The calculations predict an unstable Li sublattice at a temperature of 200 K, that we relate to the large ionic diffusivity of this system. This specificity is discussed in terms of coupling between the low frequency optic modes of the Li ions to the soft structure of the polymer.Comment: 29 pages, 13 Figure

    Effect of cell shape change on the function and differentiation of rabbit mammary cells in culture

    Get PDF
    We examined the role of cell shape, cytodifferentiation, and tissue topography on the induction and maintenance of functional differentiation in rabbit mammary cells grown as primary cultures on two-dimensional collagen surfaces or in three-dimensional collagen matrices. Mammary glands from mid-pregnant rabbits were dissociated into single cells, and epithelial cells were enriched by isopycnic centrifugation. Small spheroids of epithelial cells (approximately 50 cells) that formed on a rotary shaker were plated on or embedded in collagen gels. The cells were cultured for 1 d in serum-containing medium and then for up to 25 d in chemically defined medium. In some experiments, epithelial monolayers on gels were mechanically freed from the dishes on day 2 or 5. These gels retracted and formed floating collagen gels. On attached collagen gels, flat monolayers of a single cell type developed within a few days. The cells synthesized DNA until the achievement of confluence but did not accumulate milk proteins. No morphological changes were induced by prolactin (PRL). On floating gels, two cell types appeared in the absence of cell proliferation. The cells in direct contact with the medium became cuboidal and developed intracellular organelles typical of secretory cells. PRL-induced lipogenesis, resulting in large fat droplets filling the apical cytoplasm and accumulation of casein and α-lactalbumin in vesicles surrounding the fat droplets. We detected tranferrin in the presence or absence of PRL intracellularly in small vesicles but also in the collagen matrix in contact with the cell layer. The second cell type, rich in microfilaments and reminiscent of the myoepithelial cells, was situated between the secretory cell layer and the collagen matrix. In embedding gels, the cells formed hollow ductlike structures, which grew continuously in size. Secretory cells formed typical lumina distended by secretory products. We found few microfilament-rich cells in contact with the collagen gels. Storage and secretion of fat, caseins and alpha-lactalbumin required the presence of PRL, whereas the accumulation and vectorial discharge of transferrin was prolactin independent. There was no differentiation gradient between the tip and the cent of the outgrowth, since DNA synthesis and milk protein storage were random along the tubular structures. These results indicate that establishment of functional polarity and induction of cytodifferentiation are influenced by the nature of the interaction of the cells with the collagen structure. The morphological differentiation in turn plays an important role in the synthesis, storage, and secretion of fat and milk proteins
    corecore