1,024 research outputs found

    Ceria–terbia solid solution nanobelts with high catalytic activities for CO oxidation

    Get PDF
    Ceria–terbia solid solution nanobelts were prepared by an electrochemical route and tested as catalysts of high activity for CO oxidation

    Radio Polarization of BL Lacertae objects

    Full text link
    In this paper, using the database of the university of Michigan Radio Astronomy Observatory (UMRAO) at three (4.8 GHz, 8 GHZ, and 14.5 GHz) radio frequencies, we studied the polarization properties for 47 BL Lacertae objects(38 radio selected BL Lacertae objects, 7 X-ray selected BL Lacertae, and two inter-middle objects (Mkn 421 and Mkn 501), and found that (1) The polarizations at higher radio frequency is higher than those at lower frequency, (2) The variability of polarization at higher radio frequency is higher than those at lower frequency, (3) The polarization is correlated with the radio spectral index, and (4) The polarization is correlated with core-dominance parameter for those objects with known core-dominance parameters suggesting that the relativistic beaming could explain the polarization characteristic of BL Lacs.Comment: 5 pages, 3 figures, 1 table. PASJ, in pres

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Collective dynamics of actin and microtubule and its crosstalk mediated by FHDC1

    Get PDF
    The coordination between actin and microtubule network is crucial, yet this remains a challenging problem to dissect and our understanding of the underlying mechanisms remains limited. In this study, we used travelling waves in the cell cortex to characterize the collective dynamics of cytoskeletal networks. Our findings show that Cdc42 and F-BAR-dependent actin waves in mast cells are mainly driven by formin-mediated actin polymerization, with the microtubule-binding formin FH2 domain-containing protein 1 (FHDC1) as an early regulator. Knocking down FHDC1 inhibits actin wave formation, and this inhibition require FHDC1’s interaction with both microtubule and actin. The phase of microtubule depolymerization coincides with the nucleation of actin waves and microtubule stabilization inhibit actin waves, leading us to propose that microtubule shrinking and the concurrent release of FHDC1 locally regulate actin nucleation. Lastly, we show that FHDC1 is crucial for multiple cellular processes such as cell division and migration. Our data provided molecular insights into the nucleation mechanisms of actin waves and uncover an antagonistic interplay between microtubule and actin polymerization in their collective dynamics

    The changes of cardiac energy metabolism with sodium-glucose transporter 2 inhibitor therapy

    Get PDF
    Background/aimsTo investigate the specific effects of s odium-glucose transporter 2 inhibitor (SGLT2i) on cardiac energy metabolism.MethodsA systematic literature search was conducted in eight databases. The retrieved studies were screened according to the inclusion and exclusion criteria, and relevant information was extracted according to the purpose of the study. Two researchers independently screened the studies, extracted information, and assessed article quality.ResultsThe results of the 34 included studies (including 10 clinical and 24 animal studies) showed that SGLT2i inhibited cardiac glucose uptake and glycolysis, but promoted fatty acid (FA) metabolism in most disease states. SGLT2i upregulated ketone metabolism, improved the structure and functions of myocardial mitochondria, alleviated oxidative stress of cardiomyocytes in all literatures. SGLT2i increased cardiac glucose oxidation in diabetes mellitus (DM) and cardiac FA metabolism in heart failure (HF). However, the regulatory effects of SGLT2i on cardiac FA metabolism in DM and cardiac glucose oxidation in HF varied with disease types, stages, and intervention duration of SGLT2i.ConclusionSGLT2i improved the efficiency of cardiac energy production by regulating FA, glucose and ketone metabolism, improving mitochondria structure and functions, and decreasing oxidative stress of cardiomyocytes under pathological conditions. Thus, SGLT2i is deemed to exert a benign regulatory effect on cardiac metabolic disorders in various diseases.Systematic review registrationhttps://www.crd.york.ac.uk/, PROSPERO (CRD42023484295)

    Prevalence of COVID-19 fear and its association with quality of life among fire service recruits after ceasing the dynamic zero-COVID policy in China

    Get PDF
    BackgroundIn December 2022, China terminated its dynamic zero-COVID policy. To date, however, no research has been conducted upon mental health issues and their relationship with quality of life (hereafter QoL) among fire service recruits since the dynamic zero-COVID policy ended. This study explored fear of COVID-19 (FOC) prevalence and correlates as well as its network structure and interconnections with QoL among fire service recruits.MethodsA cross-sectional survey design was used to assess fire service recruits in Beijing and Sichuan, Guangxi and Guizhou provinces of China between February 13 and 16, 2023. Fear of COVID-19 was measured using the Fear of COVID-19 Scale, depression was assessed with the Patient Health Questionnaire, anxiety was examined using the Generalized Anxiety Disorder scale, and QOL was evaluated with the World Health Organization Quality of Life-brief version. Univariate and multivariate analyses were used to explore correlates of COVID-19 fear. Network analysis assessed the structure of fear of COVID-19 and its associations with QoL.ResultsA total of 1,560 participants were included in this study. The overall prevalence of fear of COVID-19 was 38.85% (n = 606; 95% CI = 36.42–41.32%). Being afraid of COVID-19 was significantly related to depression (OR = 1.084; p < O.OO1) and physical fatigue (OR = 1.063; p = 0.026). Fire service recruits with more fear of COVID-19 had lower QOL (F = 18.061 p < 0.001) than those with less fear of COVID-19 did. The most central symptoms included FOC6 (“Sleep difficulties caused by worry about COVID-19”), FOC7 (“Palpitations when thinking about COVID-19”) and FOC2 (“Uncomfortable to think about COVID-19”). The top three symptoms negatively associated with QoL were FOC4 (“Afraid of losing life because of COVID-19”), FOC6 (“Sleep difficulties caused by worry about COVID-19”) and FOC2 (“Uncomfortable to think about COVID-19”).ConclusionOver one-third of fire service recruits reported fear of COVID-19 after China’s dynamic zero-COVID policy had terminated. Poorer QoL was related to fear of COVID-19. Targeting core symptoms of the fear network structure could help improve the physical and mental health of fire service recruits during public health crises

    Bright attosecond gamma-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets

    Get PDF
    Attosecond light sources have the potential to open up new avenues in ultrafast science. However, the photon energies achieveable using existing generation schemes are limited to the keV range. Here we propose and numerically demonstrate an all-optical mechanism for the generation of bright MeV attosecond γ-photon beams with desirable angular momentum. Using a circularly-polarized Laguerre-Gaussian laser pulse focused onto a cone-foil target, dense attosecond bunches (. 170as) of electrons are produced. The electrons interact with the laser pulse which is reflected by a plasma mirror, producing ultra-brilliant (∼ 1023photons/s/mm2/mrad2/0.1%BW) multi-MeV (Eγ,max > 30MeV) isolated attosecond (. 260as) γ-ray pulse trains. Moreover, the angular momentum is transferred to γ-photon beams via nonlinear Compton scattering of ultra-intense tightly-focused laser pulse by energetic electrons. Such brilliant attosecond γ-photon source would provide new possibilities in the attosecond nuclear science
    corecore