178 research outputs found
Overview of aristolochic acid nephropathy: an update
Aristolochic acid nephropathy (AAN) is a rapidly progressive renal interstitial fibrosis caused by medical or environmental exposure to aristolochic acid (AA). Since the outbreak of AAN in Belgium was reported nearly 30 years ago, the safety of herbal remedies has drawn considerable attention, and AAN has become a global public health problem. Breakthroughs have been made to better understand the disease, including the toxicity of AAs, the possible mechanisms of AAN, the disease patterns, and the pathological features; however, some critical problems remain unresolved. Because of the insidious onset of the disease, the incidence of AAN and the prevalence of exposure to AAs are unknown and might be largely underestimated. During the past decades, AA-containing herbs have been strictly administrated in many regions and the occurrence of AAN has declined sharply, yet cases of AAN are still sporadically reported. Despite the progress in the understanding of the disease’s pathogenesis, there is no effective treatment for delaying or reversing the renal deterioration caused by AAN. Therefore, the risk of exposure to AAs should be taken seriously by public health workers and clinicians. In this review, we updated the latest data on AAN, summarized the advances throughout these years, and put forward some challenges for future research
Research progress on alternative kombucha substrate transformation and the resulting active components
Kombucha is a customary tea-based beverage that is produced through the process of fermenting a mixture of tea and sugar water with symbiotic culture of bacteria and yeast (SCOBY). Traditional kombucha has various beneficial effects and can improve immunity. The significant market share of Kombucha can be attributed to the growing consumer inclination towards healthy foods within the functional beverage industry. The research focus has recently expanded from the probiotics of traditional black tea kombucha to encompass other teas, Chinese herbs, plant materials, and alternative substrates. There is a lack of comprehensive literature reviews focusing on substance transformation, functional, active substances, and efficacy mechanisms of alternative kombucha substrates. This article aimed to bridge this gap by providing an in-depth review of the biological transformation pathways of kombucha metabolites and alternative substrates. The review offers valuable insights into kombucha research, including substance metabolism and transformation, efficacy, pharmacological mechanism, and the purification of active components, offering direction and focus for further studies in this field
Simultaneous Ni Doping at Atom Scale in Ceria and Assembling into Well-Defined Lotuslike Structure for Enhanced Catalytic Performance
Oxide materials with redox capability have attracted worldwide attentions in many applications. Introducing defects into crystal lattice is an effective method to modify and optimize redox capability of oxides as well as their catalytic performance. However, the relationship between intrinsic characteristics of defects and properties of oxides has been rarely reported. Herein, we report a facile strategy to introduce defects by doping a small amount of Ni atoms (∼1.8 at. %) into ceria lattice at atomic level through the effect of microstructure of crystal on the redox property of ceria. Amazingly, a small amount of single Ni atom-doped ceria has formed a homogeneous solid solution with uniform lotuslike morphology. It performs an outstanding catalytic performance of a reduced T50 of CO oxidation at 230 °C, which is 135 °C lower than that of pure CeO2 (365 °C). This is largely attributed to defects such as lattice distortion, crystal defects and elastic strain induced by Ni dopants. The DFT calculation has revealed that the electron density distribution of oxygen ions near Ni dopant, the reduced formation energy of oxygen vacancy originated from local chemical effect caused by local distortion after Ni doping. These differences have a great effect on increasing the concentration of oxygen vacancies and enhancing the migration of lattice oxygen from bulk to a surface which is closely related to optimized redox properties. As a result, oxygen storage capacity and the associated catalytic reactivity has been largely increased. We have clearly demonstrated the change of crystal lattice and the charge distribution effectively modify its chemical and physical properties at the atomic scale
Effect of acupuncture on post-stroke dysphagia: a randomized controlled trial
IntroductionPost-stroke dysphagia (PSD) is associated with various complications that increase morbidity and mortality rates. Acupuncture has been used extensively in China to treat these complications; however, its therapeutic efficacy remains uncertain. We therefore aimed to study the clinical effects of acupuncture on PSD.MethodsPatients (n = 101) were randomly divided into acupuncture (n = 50) and rehabilitation training control (n = 51) groups based on the treatment used. Both groups were treated once daily, 6 days a week, for a total of 4 weeks. Pulse oxygen saturation (SpO2) and standardized swallowing assessment (SSA) were performed before the intervention, 2 weeks into treatment, after the intervention (4 weeks post-intervention), and at a 6-month follow-up (28 weeks). The levels of hemoglobin (Hb) and albumin (ALB), and 5-hydroxytryptamine (5-HT) and dopamine (DA) were measured before the intervention, 2 weeks into treatment, and after the intervention (4 weeks), as nutrition and swallowing function indices, respectively.ResultsFollowing the intervention, significant differences were observed between the acupuncture and control groups. The acupuncture group exhibited considerably superior enhancements in SpO2 and SSA scores at 4 weeks (p < 0.001). Moreover, this group demonstrated significantly greater improvements in Hb, ALB, 5-HT, and DA values 4 weeks post-treatment (p < 0.001). However, sex-based differences were not observed (P > 0.005).ConclusionAcupuncture treatment can improve the swallowing function and nutritional status of patients with PSD, and increase the levels of 5-HT and DA. These findings strongly support the efficacy of acupuncture as a therapeutic intervention in patients with PSD.Clinicaltrial registration: identifier, ChiCTR2100052201. (https://www.chictr.org.cn/)
Galectin-9 contributes to the pathogenesis of atopic dermatitis via T cell immunoglobulin mucin-3
BackgroundAtopic dermatitis (AD), a common type 2 inflammatory disease, is driven by T helper (TH) 2/TH22polarization and cytokines.Galectin-9 (Gal-9), via its receptor T cell immunoglobulin- and mucin-domain-containing molecule-3 (TIM-3), can promote TH2/TH22 immunity. The relevance of this in AD is largely unclear.ObjectivesTo characterize the role of TIM-3 and Gal-9 in the pathogenesis of AD and underlying mechanisms.MethodsWe assessed the expression of Gal-9 and TIM-3 in 30 AD patients, to compare them with those of 30 healthy controls (HC) and to explore possible links with disease features including AD activity (SCORAD), IgE levels, and circulating eosinophils and B cells. We also determined the effects of Gal-9 on T cells from the AD patients.ResultsOur AD patients had markedly higher levels of serum Gal-9 and circulating TIM-3-expressing TH1 and TH17 cells than HC. Gal-9 and TIM-3 were linked to high disease activity, IgE levels, and circulating eosinophils and/or B cells. The rates of circulating TIM-3-positive CD4+ cells were positively correlated with rates of TH2/TH22 cells and negatively correlated with rates of TH1/TH17 cells. Gal-9 inhibited the proliferation and induced the apoptosis of T cells in patients with AD, especially in those with severe AD.ConclusionOur findings suggest thatGal-9, via TIM-3, contributes to the pathogenesis of AD by augmenting TH2/TH22 polarization through the downregulation of TH1/TH17immunity. This makes Gal-9 and TIM-3 interesting to explore further, as possible drivers of disease and targets of novel AD treatment
Social capital and healthy eating among two ethnic minority groups in Yunnan Province, Southwest China: the mediating role of social support and nutrition knowledge
BackgroundAlthough social capital has been linked to dietary intake particularly in disadvantaged populations, little is known about the mechanisms. This study aimed to investigate whether social support (SS) and nutrition knowledge (NK) mediate the association between social capital and healthy eating habits.MethodsA probability sample of two ethnic minority groups in Yunnan Province, Southwest China were included (n = 1,033, mean age 47.5 ± 14.7 years). Bonding and bridging social capital (BOC and BRC) were assessed with the Personal Social Capital Scale (PSCS-16). Dietary data were evaluated with the Chinese Healthy Eating Index (CHEI), a measure of diet quality which reflects adherence to the Chinese Dietary Guidelines. NK and SS were measured with a validated questionnaire and scale, respectively. Structural Equation Modeling was used to calculate the direct, indirect and total effects of social capital on CHEI scores.ResultsThe mean score of CHEI was 57.4 ± 9.8, which was significantly lower in men and older people. Low adherence to dietary guidelines were to observed in the consumption of dairy, beans, nuts, animal-source food vegetables and fruits. BOC and BRC were positively associated with CHEI score (β = 0.37 and 0.38, all p < 0.05). Social support and nutrition knowledge mediated 45.9 and 39.5% of the total effect of social capital on CHEI score, respectively.ConclusionSocial capital appears to enhance adherence to dietary guidelines by improving nutrition knowledge and social support. Nutrition promotion programs therefore should consider incorporating strategies that foster social capital development, particularly in disadvantaged populations
Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community
Reaching a comprehensive understanding of how nature solves the problem of degrading recalcitrant biomass may eventually allow development of more efficient biorefining processes. Here we interpret genomic and proteomic information generated from a cellulolytic microbial consortium (termed F1RT) enriched from soil. Analyses of reconstructed bacterial draft genomes from all seven uncultured phylotypes in F1RT indicate that its constituent microbes cooperate in both cellulose-degrading and other important metabolic processes. Support for cellulolytic inter-species cooperation came from the discovery of F1RT microbes that encode and express complimentary enzymatic inventories that include both extracellular cellulosomes and secreted free-enzyme systems. Metabolic reconstruction of the seven F1RT phylotypes predicted a wider genomic rationale as to how this particular community functions as well as possible reasons as to why biomass conversion in nature relies on a structured and cooperative microbial community
- …