55,976 research outputs found

    Evolutionary optimization within an intelligent hybrid system for design integration

    Get PDF
    An intelligent hybrid approach has been developed to integrate various stages in total design, including formulation of product design specifications, conceptual design, detail design, and manufacture. The integration is achieved by blending multiple artificial intelligence (AI) techniques and CAD/CAE/CAM into a single environment. It has been applied into power transmission system design. In addition to knowledge-based systems and artificial neural networks, another AI technique, genetic algorithms (GAs), are involved in the approach. The GA is used to conduct optimization tasks: (1) searching the best combination of design parameters to obtain optimum design of gears, and (2) optimization of the architecture of the artificial neural networks used in the hybrid system. In this paper, after a brief overview of the intelligent hybrid system, the GA applications are described in detail

    Integration of knowledge-based system, artificial neural networks and multimedia for gear design

    Get PDF
    Design is a complicated area consisting of a combination of rules, technical information and personal judgement. The quality of design depends highly on the designer's knowledge and experience. This system attempts to simulate the design process and to capture design expertise by combining artificial neural networks (ANNs) and knowledge based system (KBS) together with multi-media (MM). It has been applied to the design of gears. Within the system the knowledge based system handles clearly defined design knowledge, the artificial neural networks capture knowledge which is difficult to quantify and multi-media provides a user-friendly interface prompting the user to input information and to retrieve results during design process. The finished system illustrates how features of different Artificial Intelligence techniques, KBS, ANNs and MM, are combined in a hybrid manner to conduct complicated design tasks

    Non-damping oscillations at flaring loops

    Full text link
    Context. QPPs are usually detected as spatial displacements of coronal loops in imaging observations or as periodic shifts of line properties in spectroscopic observations. They are often applied for remote diagnostics of magnetic fields and plasma properties on the Sun. Aims. We combine imaging and spectroscopic measurements of available space missions, and investigate the properties of non-damping oscillations at flaring loops. Methods. We used the IRIS to measure the spectrum over a narrow slit. The double-component Gaussian fitting method was used to extract the line profile of Fe XXI 1354.08 A at "O I" window. The quasi-periodicity of loop oscillations were identified in the Fourier and wavelet spectra. Results. A periodicity at about 40 s is detected in the line properties of Fe XXI, HXR emissions in GOES 1-8 A derivative, and Fermi 26-50 keV. The Doppler velocity and line width oscillate in phase, while a phase shift of about Pi/2 is detected between the Doppler velocity and peak intensity. The amplitudes of Doppler velocity and line width oscillation are about 2.2 km/s and 1.9 km/s, respectively, while peak intensity oscillate with amplitude at about 3.6% of the background emission. Meanwhile, a quasi-period of about 155 s is identified in the Doppler velocity and peak intensity of Fe XXI, and AIA 131 A intensity. Conclusions. The oscillations at about 40 s are not damped significantly during the observation, it might be linked to the global kink modes of flaring loops. The periodicity at about 155 s is most likely a signature of recurring downflows after chromospheric evaporation along flaring loops. The magnetic field strengths of the flaring loops are estimated to be about 120-170 G using the MHD seismology diagnostics, which are consistent with the magnetic field modeling results using the flux rope insertion method.Comment: 9 pages, 9 figures, 1 table, accepted by A&

    Life cycle assessment of Libyan crude oil

    Get PDF
    Petroleum products such as petrol and diesel are fossil fuels and have a high environmental impact. There is a demand to minimize these impacts especially in the upstream and midstream oil operations, i.e. exploration, production and refining processes, due to current and upcoming environmental regulations/policies and increased environmental consumer awareness. Thus, integration of the tools, methods and techniques for sustainability into products is becoming essential to comply with environmental regulations. The Libyan petroleum industry appears to be very slow in approaching modern concepts of approaches of sustainability including Life Cycle Assessment and studies. Therefore, this paper presents a novel environmental Life Cycle assessment of Libyan petroleum refining processes conducted with the support of Life Cycle Assessment methods and related tools including Software SimaPro. The refining processes from the Azzawya Oil refinery, are analyzed and used in the assessment and the data for the assessments was collected through fieldwork conducted in Feb 2013 in both El-Sharara oil field (Repsol Oil Company) and Azzawya Oil refinery in Libya. The results show that the first significant environmental impacts are associated with fossil fuels and the second major impacts are the respiratory inorganic impacts

    Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sentence Reranking

    Full text link
    The natural language generation (NLG) component of a spoken dialogue system (SDS) usually needs a substantial amount of handcrafting or a well-labeled dataset to be trained on. These limitations add significantly to development costs and make cross-domain, multi-lingual dialogue systems intractable. Moreover, human languages are context-aware. The most natural response should be directly learned from data rather than depending on predefined syntaxes or rules. This paper presents a statistical language generator based on a joint recurrent and convolutional neural network structure which can be trained on dialogue act-utterance pairs without any semantic alignments or predefined grammar trees. Objective metrics suggest that this new model outperforms previous methods under the same experimental conditions. Results of an evaluation by human judges indicate that it produces not only high quality but linguistically varied utterances which are preferred compared to n-gram and rule-based systems.Comment: To be appear in SigDial 201

    Ab initio lattice dynamics simulations and inelastic neutron scattering spectra for studying phonons in BaFe2As2: Effect of structural phase transition, structural relaxation and magnetic ordering

    Get PDF
    We have performed extensive ab initio calculations to investigate phonon dynamics and their possible role in superconductivity in BaFe2As2 and related systems. The calculations are compared to inelastic neutron scattering data that offer improved resolution over published data [Mittal et al., PRB 78 104514 (2008)], in particular at low frequencies. Effects of structural phase transition and full/partial structural relaxation, with and without magnetic ordering, on the calculated vibrational density of states are reported. Phonons are best reproduced using either the relaxed magnetic structures or the experimental cell. Several phonon branches are affected by the subtle structural changes associated with the transition from the tetragonal to the orthorhombic phase. Effects of phonon induced distortions on the electronic and spin structure have been investigated. It is found that for some vibrational modes, there is a significant change of the electronic distribution and spin populations around the Fermi level. A peak at 20 meV in the experimental data falls into the pseudo-gap region of the calculation. This was also the case reported in our recent work combined with an empirical parametric calculation [Mittal et al., PRB 78 104514 (2008)]. The combined evidence for the coupling of electronic and spin degrees of freedom with phonons is relevant to the current interest in superconductivity in BaFe2As2 and related systems

    Bose-Einstein condensation of trapped interacting spin-1 atoms

    Full text link
    We investigate Bose-Einstein condensation of trapped spin-1 atoms with ferromagnetic or antiferromagnetic two-body contact interactions. We adopt the mean field theory and develop a Hartree-Fock-Popov type approximation in terms of a semiclassical two-fluid model. For antiferromagnetic interactions, our study reveals double condensations as atoms in the mF=0>|m_F=0> state never seem to condense under the constraints of both the conservation of total atom number NN and magnetization MM. For ferromagnetic interactions, however, triple condensations can occur. Our results can be conveniently understood in terms of the interplay of three factors: (anti) ferromagnetic atom-atom interactions, MM conservation, and the miscibilities between and among different condensed components.Comment: RevTex 4, 9 pages, 5 eps figures, to appear in Phys. Rev. A, vol 70, p
    corecore