64 research outputs found

    Expansive oral giant cell granuloma in a pediatric patient

    Full text link
    Aim: This article describes a peripheral oral giant cell granuloma (POGCG) in a pediatric patient and its surgical management and histological characteristics. Background: Peripheral oral giant cell granuloma (POGCG) is a hyperplastic reactive lesion formed by a proliferation of mononuclear cells and osteoclast-type giant cells in vascular tissue, occasionally with bone formation. Generally found in women and adults, POGCG has rarely been described in children. Case description: An 8-year-old girl was consulted for an exophytic lesion in the anterior area of the upper jaw, which had increased in volume in the preceding weeks. An excisional biopsy of the tumor was performed with an electrosurgical pencil. The pathological diagnosis was POGCG. Conclusion: Excision followed by additional therapy, such as scaling and curettage, should be the first option in the treatment of POGCG. Clinical significance: Early detection of these lesions involving the periodontium is important in order to reduce bone loss and avoid pathological dental migration

    Anti-MOG encephalitis mimicking small vessel CNS vasculitis

    Get PDF
    Objective: To report 2 patients with anti-myelin oligodendrocyte glycoprotein (MOG)-associated encephalitis who were initially misdiagnosed with small vessel primary CNS vasculitis. Methods: Review of symptoms, MRI and neuropathologic features, and response to treatment. MOG antibodies were determined in serum and CSF using a cell-based assay. Results: Symptoms included fever, headache, and progressive mental status changes and focal neurologic deficits. CSF studies revealed lymphocytic pleocytosis, and both patients had abnormal brain MRIs. Brain biopsy samples showed prominent lymphocytic infiltration of the wall of small vessels; these findings initially suggested small vessel CNS vasculitis, and both patients were treated accordingly. Although 1 patient had a relapsing-remitting course not responsive to cyclophosphamide, the other one (also treated with cyclophosphamide) did not relapse. Retrospective assessment of serum and CSF demonstrated MOG antibodies in both cases, and review of biopsy specimens showed absence of fibrinoid necrosis (a pathologic requirement for small vessel CNS vasculitis). Conclusions: Anti-MOG-associated encephalitis can be mistaken for small vessel CNS vasculitis. This is important because the diagnosis of anti-MOG-associated encephalitis does not require brain biopsy and can be established with a serologic test

    Synchronous choroid plexus papilloma and Wilms tumor in a girl, disclosing a Li-Fraumeni syndrome

    Get PDF
    Background: Li-Fraumeni Syndrome (LFS) is a cancer predisposition syndrome characterized by the early-onset of multiple primary cancers which can occur at different moments (metachronous onset) or, more rarely, coincidentally (synchronous onset). Here we describe a previously unreported patient with presentation of synchronous Wilms tumor and Choroid plexus papilloma, leading to the diagnosis of a Li-Fraumeni Syndrome (LFS). Case presentation: A 6-year-old girl without previous complains presented with abdominal pain. Abdominal US and MRI showed a left renal tumor with subcapsular hematoma. Due to mild headaches, the diagnostic workup included a brain MRI that unexpectedly identified a large left parietal lobe tumor. Histopathological analysis determined the diagnosis of classic Wilms tumor and choroid-plexus papilloma (CPP), respectively. Both neoplasms showed intense nuclear p53 immunostaining associated with the pathogenic TP53 mutation c.844C > T (p.Arg282Trp). Our patient and her father shared the same heterozygous germline TP53 mutation, confirming the diagnosis of familiar Li-Fraumeni syndrome in the girl. The treatment was tailored to simultaneous tumor presentations. Conclusions: LFS has been associated with Choroid plexus carcinoma (CPC), but rarely with CPP as in our patient. That suggests that it may be advisable to consider the possibility of analyzing TP53 mutation, not only in all patients with CPC, but also in some patients with CPP, especially when histological or clinical evidences point out to perform this study. The dissimilar presentation of LFS among our patient's father, not having so far any neoplasia diagnosed, while her daughter presented precociously with two simultaneous different tumors, could be related to possible effects of modifier genes on the underlying mutant p53 genotype

    DNA hypomethylation affects cancer-related biological functions and genes relevant in neuroblastoma pathogenesis

    Get PDF
    Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3â€Č untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation

    Neurogenetics of Dynamic Connectivity Patterns Associated With Obsessive-Compulsive Symptoms in Healthy Children

    Full text link
    Background: Obsessive-compulsive symptoms (OCSs) during childhood predispose to obsessive-compulsive disorder and have been associated with changes in brain circuits altered in obsessive-compulsive disorder samples. OCSs may arise from disturbed glutamatergic neurotransmission, impairing cognitive oscillations and promoting overstable functional states. Methods: A total of 227 healthy children completed the Obsessive Compulsive Inventory-Child Version and underwent a resting-state functional magnetic resonance imaging examination. Genome-wide data were obtained from 149 of them. We used a graph theory-based approach and characterized associations between OCSs and dynamic functional connectivity (dFC). dFC evaluates fluctuations over time in FC between brain regions, which allows characterizing regions with stable connectivity patterns (attractors). We then compared the spatial similarity between OCS-dFC correlation maps and mappings of genetic expression across brain regions to identify genes potentially associated with connectivity changes. In post hoc analyses, we investigated which specific single nucleotide polymorphisms of these genes moderated the association between OCSs and patterns of dFC. Results: OCSs correlated with decreased attractor properties in the left ventral putamen and increased attractor properties in (pre)motor areas and the left hippocampus. At the specific symptom level, increased attractor properties in the right superior parietal cortex correlated with ordering symptoms. In the hippocampus, we identified two single nucleotide polymorphisms in glutamatergic neurotransmission genes (GRM7, GNAQ) that moderated the association between OCSs and attractor features. Conclusions: We provide evidence that in healthy children, the association between dFC changes and OCSs may be mapped onto brain circuits predicted by prevailing neurobiological models of obsessive-compulsive disorder. Moreover, our findings support the involvement of glutamatergic neurotransmission in such brain network changes

    Expression of the neuron-specific protein CHD5 is an independent marker of outcome in neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chromodomain, helicase DNA-binding protein 5 (CHD5) is a potential tumor suppressor gene located on chromosome 1p36, a region recurrently deleted in high risk neuroblastoma (NB). Previous data have shown that <it>CHD5 </it>mRNA is present in normal neural tissues and in low risk NB, nevertheless, the distribution of CHD5 protein has not been explored. The aim of this study was to investigate CHD5 protein expression as an immunohistochemical marker of outcome in NB. With this purpose, CHD5 protein expression was analyzed in normal neural tissues and neuroblastic tumors (NTs). <it>CHD5 </it>gene and protein expression was reexamined after induction chemotherapy in a subset of high risk tumors to identify potential changes reflecting tumor response.</p> <p>Results</p> <p>We provide evidence that CHD5 is a neuron-specific protein, absent in glial cells, with diverse expression amongst neuron types. Within NTs, CHD5 immunoreactivity was found restricted to differentiating neuroblasts and ganglion-like cells, and absent in undifferentiated neuroblasts and stromal Schwann cells. Correlation between protein and mRNA levels was found, suggesting transcriptional regulation of <it>CHD5</it>. An immunohistochemical analysis of 90 primary NTs highlighted a strong association of CHD5 expression with favorable prognostic variables (age at diagnosis <12 months, low clinical stage, and favorable histology; P < 0.001 for all), overall survival (OS) (P < 0.001) and event-free survival (EFS) (P < 0.001). Multivariate analysis showed that CHD5 prognostic value is independent of other clinical and biologically relevant parameters, and could therefore represent a marker of outcome in NB that can be tested by conventional immunohistochemistry. The prognostic value of CHD5 was confirmed in an independent, blinded set of 32 NB tumors (P < 0.001).</p> <p>Reactivation of <it>CHD5 </it>expression after induction chemotherapy was observed mainly in those high risk tumors with induced tumor cell differentiation features. Remarkably, these NB tumors showed good clinical response and prolonged patient survival.</p> <p>Conclusions</p> <p>The neuron-specific protein CHD5 may represent a marker of outcome in NB that can be tested by conventional immunohistochemistry. Re-establishment of CHD5 expression induced by chemotherapy could be a surrogate marker of treatment response.</p

    Tissue Compatibility of SN-38-Loaded Anticancer Nanofiber Matrices

    Get PDF
    Delivery of chemotherapy in the surgical bed has shown preclinical activity to control cancer progression upon subtotal resection of pediatric solid tumors, but whether this new treatment is safe for tumor‐adjacent healthy tissues remains unknown. Here, Wistar rats are used to study the anatomic and functional impact of electrospun nanofiber matrices eluting SN‐38 a potent chemotherapeutic agent on several body sites where pediatric tumors such as neuroblastoma, Ewing sarcoma, and rhabdomyosarcoma arise. Blank and SN‐38‐loaded matrices embracing the femoral neurovascular bundle or in direct contact with abdominal viscera (liver, kidney, urinary bladder, intestine, and uterus) are placed. Foreign body tissue reaction to the implants is observed though no histologic damage in any tissue/organ. Skin healing is normal. Tissue reaction is similar for SN‐38‐loaded and blank matrices, with the exception of the hepatic capsule that is thicker for the former although within the limits consistent with mild foreign body reaction. Tissue and organ function is completely conserved after local treatments, as assessed by the rotarod test (forelimb function), hematologic tests (liver and renal function), and control of clinical signs. Overall, these findings support the clinical translation of SN‐38‐loaded nanofiber matrices to improve local control strategies of surgically resected tumors

    Tissue compatibility of SN-38-loaded anticancer nanofiber matrices

    Get PDF
    Delivery of chemotherapy in the surgical bed has shown preclinical activity to control cancer progression upon subtotal resection of pediatric solid tumors, but whether this new treatment is safe for tumor-adjacent healthy tissues remains unknown. Here, Wistar rats are used to study the anatomic and functional impact of electrospun nano¿ber matrices eluting SN-38—a potent chemotherapeutic agent—on several body sites where pediatric tumors such as neuroblastoma, Ewing sarcoma, and rhabdomyosarcoma arise. Blank and SN-38-loaded matrices embracing the femoral neurovascular bundle or in direct contact with abdominal viscera (liver, kidney, urinary bladder, intestine, and uterus) are placed. Foreign body tissue reaction to the implants is observed though no histologic damage in any tissue/organ. Skin healing is normal. Tissue reaction is similar for SN-38-loaded and blank matrices, with the exception of the hepatic capsule that is thicker for the former although within the limits consistent with mild foreign body reaction. Tissue and organ function is completely conserved after local treatments, as assessed by the rotarod test (forelimb function), hematologic tests (liver and renal function), and control of clinical signs. Overall, these ¿ndings support the clinical translation of SN-38-loaded nano¿ber matrices to improve local control strategies of surgically resected tumorsPostprint (author's final draft

    MIF/CXCR4 signaling axis contributes to survival, invasion, and drug resistance of metastatic neuroblastoma cells in the bone marrow microenvironment

    Full text link
    Background: The bone marrow (BM) is the most common site of dissemination in patients with aggressive, metastatic neuroblastoma (NB). However, the molecular mechanisms underlying the aggressive behavior of NB cells in the BM niche are still greatly unknown. In the present study, we explored biological mechanisms that play a critical role in NB cell survival and progression in the BM and investigated potential therapeutic targets. Methods: Patient-derived bone marrow (BM) primary cultures were generated using fresh BM aspirates obtained from NB patients. NB cell lines were cultured in the presence of BM conditioned media containing cell-secreted factors, and under low oxygen levels (1% O2) to mimic specific features of the BM microenvironment of high-risk NB patients. The BM niche was explored using cytokine profiling assays, cell migration-invasion and viability assays, flow cytometry and analysis of RNA-sequencing data. Selective pharmacological inhibition of factors identified as potential mediators of NB progression within the BM niche was performed in vitro and in vivo. Results: We identified macrophage migration inhibitory factor (MIF) as a key inflammatory cytokine involved in BM infiltration. Cytokine profiling and RNA-sequencing data analysis revealed NB cells as the main source of MIF in the BM, suggesting a potential role of MIF in tumor invasion. Exposure of NB cells to BM-conditions increased NB cell-surface expression of the MIF receptor CXCR4, which was associated with increased cell viability, enhanced migration-invasion, and activation of PI3K/AKT and MAPK/ERK signaling pathways. Moreover, subcutaneous co-injection of NB and BM cells enhanced tumor engraftment in mice. MIF inhibition with 4-IPP impaired in vitro NB aggressiveness, and improved drug response while delayed NB growth, improving survival of the NB xenograft model. Conclusions: Our findings suggest that BM infiltration by NB cells may be mediated, in part, by MIF-CXCR4 signaling. We demonstrate the antitumor efficacy of MIF targeting in vitro and in vivo that could represent a novel therapeutic target for patients with disseminated high-risk NB

    EpiGe: A machine-learning strategy for rapid classification of medulloblastoma using PCR-based methyl-genotyping

    Get PDF
    Molecular classification of medulloblastoma is critical for the treatment of this brain tumor. Array-based DNA methylation profiling has emerged as a powerful approach for brain tumor classification. However, this technology is currently not widely available. We present a machine-learning decision support system (DSS) that enables the classification of the principal molecular groups—WNT, SHH, and non-WNT/non-SHH—directly from quantitative PCR (qPCR) data. We propose a framework where the developed DSS appears as a user-friendly web-application—EpiGe-App—that enables automated interpretation of qPCR methylation data and subsequent molecular group prediction. The basis of our classification strategy is a previously validated six-cytosine signature with subgroup-specific methylation profiles. This reduced set of markers enabled us to develop a methyl-genotyping assay capable of determining the methylation status of cytosines using qPCR instruments. This study provides a comprehensive approach for rapid classification of clinically relevant medulloblastoma groups, using readily accessible equipment and an easy-to-use web-application.The study was supported by Associations of Parents and Families of Children with Cancer and by funding of the Spanish Ministry of for Science, Innovation and University (grant PI20/00519; PI CL) and the Foundation La MaratĂł TV3 (grant 201921-30; PI CL). We acknowledge the multidisciplinary team who helped in the molecular analyses and care of patients, and the BioBank Hospital Sant Joan de DĂ©u of the Spanish BioBank Network for sample procurement. We also acknowledge Marta Fortuny for communication strategy advice and Eduard Puig for legal assistance and data protection regulations. Authors acknowledge the SJD Fundraising Team.Peer ReviewedArticle signat per 23 autors/es: Soledad GĂłmez-GonzĂĄlez, Joshua Llano, Marta Garcia, Alicia Garrido-Garcia, Mariona Suñol, Isadora Lemos, Sara Perez-Jaume, Noelia Salvador, Nagore Gene-Olaciregui, Raquel Arnau GalĂĄn, Vicente Santa-MarĂ­a, Marta Perez-Somarriba, Alicia Castañeda, JosĂ© Hinojosa, Ursula Winter, Francisco Barbosa Moreira, Fabiana Lubieniecki, Valeria Vazquez, Jaume Mora, Ofelia Cruz, AndrĂ©s Morales La Madrid, Alexandre Perera, Cinzia Lavarino.Postprint (published version
    • 

    corecore